Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important me...Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects.展开更多
A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal d...A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.展开更多
In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosi...In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosity source term appears in the momentum equation. The numerical model of the shallow water equations with porosity is presented with the finite volume method on unstructured grids and the modified Roe-type approximate Riemann solver. The source terms of the bed slope and porosity are both decomposed in the characteristic direction so that the numerical scheme can exactly satisfy the conservative property. The present model was tested with a dam break with discontinuous porosity and a flash flood in the Toce River Valley. The results show that the model can simulate the influence of obstructions, and the numerical scheme can maintain the flux balance at the interface with high efficiency and resolution.展开更多
In the present paper, high-order finite volume schemes on unstructured grids developed in our previous papers are extended to solve three-dimensional inviscid and viscous flows. The highorder variational reconstructio...In the present paper, high-order finite volume schemes on unstructured grids developed in our previous papers are extended to solve three-dimensional inviscid and viscous flows. The highorder variational reconstruction technique in terms of compact stencil is improved to reduce local condition numbers. To further improve the efficiency of computation, the adaptive mesh refinement technique is implemented in the framework of high-order finite volume methods. Mesh refinement and coarsening criteria are chosen to be the indicators for certain flow structures. One important challenge of the adaptive mesh refinement technique on unstructured grids is the dynamic load balancing in parallel computation. To solve this problem, the open-source library p4 est based on the forest of octrees is adopted. Several two-and three-dimensional test cases are computed to verify the accuracy and robustness of the proposed numerical schemes.展开更多
A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method o...A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids. The developed HWENO methodology utilizes high-order derivative information to keep WENO re- construction stencils in the von Neumann neighborhood. A simple and efficient technique is also proposed to enhance the smoothness of the existing stencils, making higher-order scheme stable and simplifying the reconstruction process at the same time. The resulting HWENO-based limiters are as compact as the underlying DG schemes and therefore easy to implement. Numerical results for a wide range of flow conditions demonstrate that for DG schemes of up to fourth order of accuracy, the designed HWENO limiters can simul- taneously obtain uniform high order accuracy and sharp, es- sentially non-oscillatory shock transition.展开更多
The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Ro...The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Roe scheme is applied in the calculation of the intercell numerical flux, and the MUSCL method is introduced to improve its accuracy. The time integral is a two-step scheme of forecast and revision. For the verification of the present method, the Stoker's problem is calculated and the result is compared with the mathematically analytic solutions. The comparison indicates that the method is feasible. A sea area of a port is used as an example to test the method established here. The result shows that the present computational method is satisfactory, and it could be applied to the engineering fields.展开更多
The simulation of hypersonic flows with fully unstructured(tetrahedral)grids has severe problems with respect to the prediction of stagnation region heating,due to the random face orientation without alignment to the ...The simulation of hypersonic flows with fully unstructured(tetrahedral)grids has severe problems with respect to the prediction of stagnation region heating,due to the random face orientation without alignment to the bow shock.To improve the accuracy of aero-heating predictions,three multi-dimensional approaches on unstructured grids are coupled in our Reynolds-averaged Navier-Stokes(RANS)solver,including multi-dimensional upwind flux reconstruction(MUP),multi-dimensional limiter(MLP-u2)and multi-dimensional gradient reconstruction(MLR).The coupled multi-dimensional RANS solver is validated by several typical verification and validation(V&V)cases,including hypersonic flows over a cylinder,a blunt biconic,and a double-ellipsoid,with commonly used prism/tetrahedral hybrid grids.Finally,the coupled multi-dimensional solver is applied to simulating the heat flux distribution over a 3D engineering configuration,i.e.a Hermes-like space shuttle model.The obtained numerical results are compared with experimental data.The predicted results demonstrate that the coupled multi-dimensional approach has a good prediction capability on aerodynamic heating over a wide range of complex engineering configurations.展开更多
This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance ...This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance the computation efficiency of fluid structure interaction in complex domain.The Navier-Stokes equation was discretized spacially with collocated finite volume method and Euler implicit method in time domain.The rigid body motion was simulated by immersed boundary method in which the fluid and rigid body interface interaction was dealt with VOS(volume of solid) method.A new VOS calculation method based on graph was presented in which both immersed boundary points and cross points were collected in arbitrary order to form a graph.The method is verified with flow past oscillating cylinder.展开更多
A second-order mixing difference scheme with a limiting factor is deduced with the reconstruction gradient method and applied to discretizing the Navier-Stokes equation in an unstructured grid.The transform of nonorth...A second-order mixing difference scheme with a limiting factor is deduced with the reconstruction gradient method and applied to discretizing the Navier-Stokes equation in an unstructured grid.The transform of nonorthogonal diffusion items generated by the scheme in discrete equations is provided.The Delaunay triangulation method is improved to generate the unstructured grid.The computing program based on the SIMPLE algorithm in an unstructured grid is compiled and used to solve the discrete equations of two types of incompressible viscous flow.The numerical simulation results of the laminar flow driven by lid in cavity and flow behind a cylinder are compared with the theoretical solution and experimental data respectively.In the former case,a good agreement is achieved in the main velocity and drag coefficient curve.In the latter case,the numerical structure and development of vortex under several Reynolds numbers match well with that of the experiment.It is indicated that the factor difference scheme is of higher accuracy,and feasible to be applied to Navier-Stokes equation.展开更多
Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellit...Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellites,inverting the Earth’s three-dimensional conductivity distribution on a global scale becomes attainable.A key requirement in the global conductivity inversion is to have a forward solver with high-accuracy and efficiency.In this study,a finite volume method for global electromagnetic induction forward modeling is developed based on unstructured grids.Arbitrary polyhedral grids are supported in our algorithms to obtain high geometric adaptability.We employ a cell-centered collocated variable arrangement which allows convenient discretization for complex geometries and straightforward implementation of multigrid technique.To validate the method,we test our code with two synthetic models and compare our finite volume results with an analytical solution and a finite element numerical solution.Good agreements are observed between our solution and other results,indicating acceptable accuracy of the proposed method.展开更多
Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the tmstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. "Vertex merging algorithm based on rel...Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the tmstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. "Vertex merging algorithm based on relaxed AVL tree is investigated to construct topological structure for stereo lithography (STL) files, and a topology-based self-adaptive layered slicing algorithm with special features control strategy is brought forward. With the help of convex hull, a new points-in-polygon method is employed to improve the Cartesian cut cell method. By integrating the self-adaptive layered slicing algorithm and the improved Cartesian cut cell method, the adaptive layered Cartesian cut cell method gains the volume data of the complex CAD model in STL file and generates the unstructured hexahedral anisotropic Cartesian grids.展开更多
A cell-centred overset unstructured grids approach is developed.In this approach,the intergrid boundary is initially established based on the wall distance from the cell centre,and is then optimized.To accelerate the ...A cell-centred overset unstructured grids approach is developed.In this approach,the intergrid boundary is initially established based on the wall distance from the cell centre,and is then optimized.To accelerate the intergrid-boundary definition much more,a neighbor-toneighbor donor search algorithm based on advancing-front method is modified with the help of minimum cuboid boxes.To simplify the communications between different grid cell types and to obtain second-order spatial accuracy,a new interpolation method is constructed based on linear reconstruction,which employs only one layer of fringe cells along the intergrid boundary.For unsteady flows with relative motion,the intergrid boundary can be redefined fast and automatically.Several numerical results show that the present dynamic overset unstructured grids approach is accurate and reliable.展开更多
A depth-integrated model for simulating wave-induced longshore current was developed with unstructured grids. Effects of surface roller and horizontal mixing under combined waves and currents were incorporated in the ...A depth-integrated model for simulating wave-induced longshore current was developed with unstructured grids. Effects of surface roller and horizontal mixing under combined waves and currents were incorporated in the numerical model. Recommended values of model coefficients were also proposed based on sensitivity analysis. Field observations and three series of laboratory measurements including two cases conducted on the plane beach and one implemented on the ideal inlet were employed to examine the predictive capability of this model. For the field case and laboratory cases conducted on the plane beach, numerical results were compared favorably with the measured data. For the case with an ideal inlet, simulated circulation pattern is supposed to be reasonable although some deviations between numerical results and measured data still can be detected.展开更多
By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical so...By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical solution of the modified wave action equation and eikonal equation, which can describe the wave refraction and diffraction. The hydrodynamic model is driven by the wave-induced radiation stresses and affected by the wave turbulence. The numerical implementation of the module has used the finite-volume schemes on unstructured grid, which provides great flexibility for modeling the waves and currents in the complex actual nearshore, and ensures the conservation of energy propagation. The applicability of the proposed model is evaluated in calculating the cases of wave set-up, longshore currents, undertow on a sloping beach, rip currents and meandering longshore currents on a tri-cuspate beach. The results indicate that it is necessary to introduce the depth-dependent radiation stresses into the numerical simulation of wave-induced currents, and comparisons show that the present model makes better prediction on the wave procedure as well as both horizontal and vertical structures in the wave-induced current field.展开更多
A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing t...A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time. The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and, while it has the attractive property of being conservative. The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy. A conservative scalar transport algorithm is also applied to discretize k - c equations in this model. The eddy viscosity is calculated from the k-c turbulent model. The resulting model is mass and momentum conservative. The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field, and then applied to simulate the tidal flow in the Bohai Sea.展开更多
In most TVD schemes, the r-factors were proposed according to the cell-centered(CC) finite volume method(FVM) framework for the numerical approximation to the convective term. However, it is questionable whether t...In most TVD schemes, the r-factors were proposed according to the cell-centered(CC) finite volume method(FVM) framework for the numerical approximation to the convective term. However, it is questionable whether those r-factors would be appropriate and effective for the vertex-centered(VC) FVM. In the paper, we collected five kinds of r-factor formulae and found out that only three of those, respectively by Bruner(1996), Darwish and Moukalled(2003) and Cassuli and Zanolli(2005) can be formally extended to a context of the VC FVM. Numerical tests indicate that the TVD schemes and r-factors, after being extended and introduced to a context of the VC FVM, maintained their similar characteristics as in a context of the CC FVM. However, when the gradient-based r-factors and the SUPERBEE scheme were applied simultaneously, non-physical oscillations near the sharp step would appear. In the transient case, the oscillations were weaker in a context of the VC FVM than those in a context of the CC FVM, while the effect was reversed in the steady case. To eliminate disadvantages in the gradient-based r-factor formula, a new modification method by limiting values on the virtual node, namely Фu in the paper, was validated by the tests to effectively dissipate spurious oscillations.展开更多
In the framework of finite volume method(FVM),two modified schemes of quadratic upstream interpolation for convective kinematics(QUICK),namely quasi-QUICK(Q-QUICK) and normal quasi-QUICK(NQ-QUICK),for improving the pr...In the framework of finite volume method(FVM),two modified schemes of quadratic upstream interpolation for convective kinematics(QUICK),namely quasi-QUICK(Q-QUICK) and normal quasi-QUICK(NQ-QUICK),for improving the precision of convective flux approximation are verified in 3D unsteady advectiondiffusion equation of pollutants on unstructured grids.The constructed auxiliary nodes for Q-QUICK or NQQUICK are composed of two neighboring nodes plus the next upwind node;the later node is generated from intersection of the line of current neighboring nodes and their corresponding interfaces.The numerical results show that Q-QUICK and NQ-QUICK overwhelm central differencing scheme(CDS) in computational accuracy and behave similar numerical stability to upwind difference scheme(UDS),hybrid differencing scheme(HDS) and power difference scheme(PDS) after applying the deferred correction method.Their corresponding CPU time is approximately equivalent to that of traditional difference schemes.In addition,their abilities for adapting high grid deformation are robust.It is so promising to apply the suggested schemes to simulate pollutant transportation on arbitrary 3D natural boundary in the hydraulic or environmental engineering.展开更多
Based on the C-Coupler platform,the semi-unstructured Climate System Model,Synthesis Community Integrated Model version 2(SYCIM2.0),has been developed at the School of Atmospheric Sciences,Sun Yat-sen University.SYCIM...Based on the C-Coupler platform,the semi-unstructured Climate System Model,Synthesis Community Integrated Model version 2(SYCIM2.0),has been developed at the School of Atmospheric Sciences,Sun Yat-sen University.SYCIM2.0 aims to meet the demand for seamless climate prediction through accurate climate simulations and projections.This paper provides an overview of SYCIM2.0 and highlights its key features,especially the coupling of an unstructured ocean model and the tuning process.An extensive evaluation of its performance,focusing on the East Asian Summer Monsoon(EASM),is presented based on long-term simulations with fixed external forcing.The results suggest that after nearly 240 years of integration,SYCIM2.0 achieves a quasi-equilibrium state,albeit with small trends in the net radiation flux at the top-of-atmosphere(TOA)and Earth’s surface,as well as with global mean near-surface temperatures.Compared to observational and reanalysis data,the model realistically simulates spatial patterns of sea surface temperature(SST)and precipitation centers to include their annual cycles,in addition to the lower-level wind fields in the EASM region.However,it exhibits a weakened and eastward-shifted Western Pacific Subtropical High(WPSH),resulting in an associated precipitation bias.SYCIM2.0 robustly captures the dominant mode of the EASM and its close relationship with the El Niño-Southern Oscillation(ENSO)but exhibits relatively poor performance in simulating the second leading mode and the associated air–sea interaction processes.Further comprehensive evaluations of SYCIM2.0 will be conducted in future studies.展开更多
We propose a new 3D inversion scheme to invert the near-and transition-zone data of CSAMT with topography accurately.In this new method,the earth was discretized into unstructured tetrahedra to fit the ragged topograp...We propose a new 3D inversion scheme to invert the near-and transition-zone data of CSAMT with topography accurately.In this new method,the earth was discretized into unstructured tetrahedra to fit the ragged topography and the vector fi nite-element method was adopted to obtain precise responses and good sensitivity.To simulate the attitude and shape of the transmitter,we divided a long-grounded transmitter into dipoles and integrated these dipoles to obtain good responses in the near-and transition-fi eld zones.Next,we designed an L2 norm-based objective functional and applied a standard quasi-Newton method as the optimization method to solve the inverse problem and guarantee steady convergence.We tested our 3D inversion method first on synthetic data and then on a field dataset acquired from select sites near Changbai Mountain,China.In both tests,the new inversion algorithm achieved excellent fitting between the predicted and observed data,even in near-and transition-fi eld zones,and the inversion results agreed well with the true model.These fi ndings reveal that the proposed algorithm is eff ective for 3D inversion of CSAMT data.展开更多
An efficient high-order numerical method for supersonic reactive flows is proposed in this article.The reactive source term and convection term are solved separately by splitting scheme.In the reaction step,an adaptiv...An efficient high-order numerical method for supersonic reactive flows is proposed in this article.The reactive source term and convection term are solved separately by splitting scheme.In the reaction step,an adaptive time-step method is presented,which can improve the efficiency greatly.In the convection step,a third-order accurate weighted essentially non-oscillatory(WENO)method is adopted to reconstruct the solution in the unstructured grids.Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids,while high order accuracy can be achieved in the smooth region.In addition,the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.展开更多
基金The National Natural Science Foundation of China under contract No.42076214.
文摘Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects.
基金The Major State Basic Research Program of China under contract No. 2012CB417002the National Natural Science Foundation of China under contract Nos 50909065 and 51109039
文摘A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.
基金supported by the National Natural Science Foundation of China (Grants No. 50909065 and 51109039)the National Basic Research Program of China (973 Program, Grant No. 2012CB417002)
文摘In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosity source term appears in the momentum equation. The numerical model of the shallow water equations with porosity is presented with the finite volume method on unstructured grids and the modified Roe-type approximate Riemann solver. The source terms of the bed slope and porosity are both decomposed in the characteristic direction so that the numerical scheme can exactly satisfy the conservative property. The present model was tested with a dam break with discontinuous porosity and a flash flood in the Toce River Valley. The results show that the model can simulate the influence of obstructions, and the numerical scheme can maintain the flux balance at the interface with high efficiency and resolution.
基金supported by the National Natural Science Foundation of China(Nos.91752114 and 11672160)
文摘In the present paper, high-order finite volume schemes on unstructured grids developed in our previous papers are extended to solve three-dimensional inviscid and viscous flows. The highorder variational reconstruction technique in terms of compact stencil is improved to reduce local condition numbers. To further improve the efficiency of computation, the adaptive mesh refinement technique is implemented in the framework of high-order finite volume methods. Mesh refinement and coarsening criteria are chosen to be the indicators for certain flow structures. One important challenge of the adaptive mesh refinement technique on unstructured grids is the dynamic load balancing in parallel computation. To solve this problem, the open-source library p4 est based on the forest of octrees is adopted. Several two-and three-dimensional test cases are computed to verify the accuracy and robustness of the proposed numerical schemes.
基金supported by the National Basic Research Program of China (2009CB724104)the National Natural Science Foundation of China (90716010)
文摘A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids. The developed HWENO methodology utilizes high-order derivative information to keep WENO re- construction stencils in the von Neumann neighborhood. A simple and efficient technique is also proposed to enhance the smoothness of the existing stencils, making higher-order scheme stable and simplifying the reconstruction process at the same time. The resulting HWENO-based limiters are as compact as the underlying DG schemes and therefore easy to implement. Numerical results for a wide range of flow conditions demonstrate that for DG schemes of up to fourth order of accuracy, the designed HWENO limiters can simul- taneously obtain uniform high order accuracy and sharp, es- sentially non-oscillatory shock transition.
基金This paper was supported bythe Natural Science Foundation of Shandong Province (Grant No.y2004f13)
文摘The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Roe scheme is applied in the calculation of the intercell numerical flux, and the MUSCL method is introduced to improve its accuracy. The time integral is a two-step scheme of forecast and revision. For the verification of the present method, the Stoker's problem is calculated and the result is compared with the mathematically analytic solutions. The comparison indicates that the method is feasible. A sea area of a port is used as an example to test the method established here. The result shows that the present computational method is satisfactory, and it could be applied to the engineering fields.
基金the National Key Research&Development Program of China(2016YFB020071)the National Natural Science Foundation of China(Grants 11532016 and 11702315).
文摘The simulation of hypersonic flows with fully unstructured(tetrahedral)grids has severe problems with respect to the prediction of stagnation region heating,due to the random face orientation without alignment to the bow shock.To improve the accuracy of aero-heating predictions,three multi-dimensional approaches on unstructured grids are coupled in our Reynolds-averaged Navier-Stokes(RANS)solver,including multi-dimensional upwind flux reconstruction(MUP),multi-dimensional limiter(MLP-u2)and multi-dimensional gradient reconstruction(MLR).The coupled multi-dimensional RANS solver is validated by several typical verification and validation(V&V)cases,including hypersonic flows over a cylinder,a blunt biconic,and a double-ellipsoid,with commonly used prism/tetrahedral hybrid grids.Finally,the coupled multi-dimensional solver is applied to simulating the heat flux distribution over a 3D engineering configuration,i.e.a Hermes-like space shuttle model.The obtained numerical results are compared with experimental data.The predicted results demonstrate that the coupled multi-dimensional approach has a good prediction capability on aerodynamic heating over a wide range of complex engineering configurations.
文摘This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance the computation efficiency of fluid structure interaction in complex domain.The Navier-Stokes equation was discretized spacially with collocated finite volume method and Euler implicit method in time domain.The rigid body motion was simulated by immersed boundary method in which the fluid and rigid body interface interaction was dealt with VOS(volume of solid) method.A new VOS calculation method based on graph was presented in which both immersed boundary points and cross points were collected in arbitrary order to form a graph.The method is verified with flow past oscillating cylinder.
基金Supported by National Natural Science Foundation of China (No. 10632050)
文摘A second-order mixing difference scheme with a limiting factor is deduced with the reconstruction gradient method and applied to discretizing the Navier-Stokes equation in an unstructured grid.The transform of nonorthogonal diffusion items generated by the scheme in discrete equations is provided.The Delaunay triangulation method is improved to generate the unstructured grid.The computing program based on the SIMPLE algorithm in an unstructured grid is compiled and used to solve the discrete equations of two types of incompressible viscous flow.The numerical simulation results of the laminar flow driven by lid in cavity and flow behind a cylinder are compared with the theoretical solution and experimental data respectively.In the former case,a good agreement is achieved in the main velocity and drag coefficient curve.In the latter case,the numerical structure and development of vortex under several Reynolds numbers match well with that of the experiment.It is indicated that the factor difference scheme is of higher accuracy,and feasible to be applied to Navier-Stokes equation.
基金supported by the National Natural Science Foundation of China(41922027,4214200052)by the Macao Foundation+1 种基金by the Pre-research Project on Civil Aerospace Technologies No.D020308/D020303 funded by China National Space Administrationby the Macao Science and Technology Development Fund,grant No.0001/2019/A1。
文摘Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellites,inverting the Earth’s three-dimensional conductivity distribution on a global scale becomes attainable.A key requirement in the global conductivity inversion is to have a forward solver with high-accuracy and efficiency.In this study,a finite volume method for global electromagnetic induction forward modeling is developed based on unstructured grids.Arbitrary polyhedral grids are supported in our algorithms to obtain high geometric adaptability.We employ a cell-centered collocated variable arrangement which allows convenient discretization for complex geometries and straightforward implementation of multigrid technique.To validate the method,we test our code with two synthetic models and compare our finite volume results with an analytical solution and a finite element numerical solution.Good agreements are observed between our solution and other results,indicating acceptable accuracy of the proposed method.
基金This project is supported by National Natural Science Foundation of China (No. 60375020, No. 50305033)Provincial Natural Science Foundation of Zhejiang, China (No. Y105430).
文摘Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the tmstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. "Vertex merging algorithm based on relaxed AVL tree is investigated to construct topological structure for stereo lithography (STL) files, and a topology-based self-adaptive layered slicing algorithm with special features control strategy is brought forward. With the help of convex hull, a new points-in-polygon method is employed to improve the Cartesian cut cell method. By integrating the self-adaptive layered slicing algorithm and the improved Cartesian cut cell method, the adaptive layered Cartesian cut cell method gains the volume data of the complex CAD model in STL file and generates the unstructured hexahedral anisotropic Cartesian grids.
基金supported by the National Basic Research Program of China (2009CB724104)
文摘A cell-centred overset unstructured grids approach is developed.In this approach,the intergrid boundary is initially established based on the wall distance from the cell centre,and is then optimized.To accelerate the intergrid-boundary definition much more,a neighbor-toneighbor donor search algorithm based on advancing-front method is modified with the help of minimum cuboid boxes.To simplify the communications between different grid cell types and to obtain second-order spatial accuracy,a new interpolation method is constructed based on linear reconstruction,which employs only one layer of fringe cells along the intergrid boundary.For unsteady flows with relative motion,the intergrid boundary can be redefined fast and automatically.Several numerical results show that the present dynamic overset unstructured grids approach is accurate and reliable.
文摘A depth-integrated model for simulating wave-induced longshore current was developed with unstructured grids. Effects of surface roller and horizontal mixing under combined waves and currents were incorporated in the numerical model. Recommended values of model coefficients were also proposed based on sensitivity analysis. Field observations and three series of laboratory measurements including two cases conducted on the plane beach and one implemented on the ideal inlet were employed to examine the predictive capability of this model. For the field case and laboratory cases conducted on the plane beach, numerical results were compared favorably with the measured data. For the case with an ideal inlet, simulated circulation pattern is supposed to be reasonable although some deviations between numerical results and measured data still can be detected.
基金financially supported by the the National Natural Science Foundation of China(Grant No.51709054)the Public Science and Technology Research Funds Projects of Ocean(Grant Nos.201405025 and 201505019)
文摘By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical solution of the modified wave action equation and eikonal equation, which can describe the wave refraction and diffraction. The hydrodynamic model is driven by the wave-induced radiation stresses and affected by the wave turbulence. The numerical implementation of the module has used the finite-volume schemes on unstructured grid, which provides great flexibility for modeling the waves and currents in the complex actual nearshore, and ensures the conservation of energy propagation. The applicability of the proposed model is evaluated in calculating the cases of wave set-up, longshore currents, undertow on a sloping beach, rip currents and meandering longshore currents on a tri-cuspate beach. The results indicate that it is necessary to introduce the depth-dependent radiation stresses into the numerical simulation of wave-induced currents, and comparisons show that the present model makes better prediction on the wave procedure as well as both horizontal and vertical structures in the wave-induced current field.
基金financially supported by the Science and Technology Project of the Ministry of Transport (Grant No. 2011329224170)
文摘A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time. The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and, while it has the attractive property of being conservative. The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy. A conservative scalar transport algorithm is also applied to discretize k - c equations in this model. The eddy viscosity is calculated from the k-c turbulent model. The resulting model is mass and momentum conservative. The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field, and then applied to simulate the tidal flow in the Bohai Sea.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41306078 and 41301414)the National Engineering Research Center for Inland Waterway Regulation and Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education Program(Grant No.SLK2016B03)the Key Laboratory of the Inland Waterway Regulation of the Ministry of Transportation Program(Grant No.NHHD-201514)
文摘In most TVD schemes, the r-factors were proposed according to the cell-centered(CC) finite volume method(FVM) framework for the numerical approximation to the convective term. However, it is questionable whether those r-factors would be appropriate and effective for the vertex-centered(VC) FVM. In the paper, we collected five kinds of r-factor formulae and found out that only three of those, respectively by Bruner(1996), Darwish and Moukalled(2003) and Cassuli and Zanolli(2005) can be formally extended to a context of the VC FVM. Numerical tests indicate that the TVD schemes and r-factors, after being extended and introduced to a context of the VC FVM, maintained their similar characteristics as in a context of the CC FVM. However, when the gradient-based r-factors and the SUPERBEE scheme were applied simultaneously, non-physical oscillations near the sharp step would appear. In the transient case, the oscillations were weaker in a context of the VC FVM than those in a context of the CC FVM, while the effect was reversed in the steady case. To eliminate disadvantages in the gradient-based r-factor formula, a new modification method by limiting values on the virtual node, namely Фu in the paper, was validated by the tests to effectively dissipate spurious oscillations.
基金the National Public Research Institutes for Basic Research and Development Operating Expenses Special Project (Nos.CKSF2010014/SL,YWF0905,CKSF2010011 and CKSF2012008/SL)the National Basic Research Program (973) of China(No.2007CB714106)
文摘In the framework of finite volume method(FVM),two modified schemes of quadratic upstream interpolation for convective kinematics(QUICK),namely quasi-QUICK(Q-QUICK) and normal quasi-QUICK(NQ-QUICK),for improving the precision of convective flux approximation are verified in 3D unsteady advectiondiffusion equation of pollutants on unstructured grids.The constructed auxiliary nodes for Q-QUICK or NQQUICK are composed of two neighboring nodes plus the next upwind node;the later node is generated from intersection of the line of current neighboring nodes and their corresponding interfaces.The numerical results show that Q-QUICK and NQ-QUICK overwhelm central differencing scheme(CDS) in computational accuracy and behave similar numerical stability to upwind difference scheme(UDS),hybrid differencing scheme(HDS) and power difference scheme(PDS) after applying the deferred correction method.Their corresponding CPU time is approximately equivalent to that of traditional difference schemes.In addition,their abilities for adapting high grid deformation are robust.It is so promising to apply the suggested schemes to simulate pollutant transportation on arbitrary 3D natural boundary in the hydraulic or environmental engineering.
基金funded by the National Natural Science Foundation of China(Grant Nos.U21A6001,42261144687,42175173)the Project supported by Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP208)the GuangDong Basic and Applied Basic Research Foundation(2023A1515240036).
文摘Based on the C-Coupler platform,the semi-unstructured Climate System Model,Synthesis Community Integrated Model version 2(SYCIM2.0),has been developed at the School of Atmospheric Sciences,Sun Yat-sen University.SYCIM2.0 aims to meet the demand for seamless climate prediction through accurate climate simulations and projections.This paper provides an overview of SYCIM2.0 and highlights its key features,especially the coupling of an unstructured ocean model and the tuning process.An extensive evaluation of its performance,focusing on the East Asian Summer Monsoon(EASM),is presented based on long-term simulations with fixed external forcing.The results suggest that after nearly 240 years of integration,SYCIM2.0 achieves a quasi-equilibrium state,albeit with small trends in the net radiation flux at the top-of-atmosphere(TOA)and Earth’s surface,as well as with global mean near-surface temperatures.Compared to observational and reanalysis data,the model realistically simulates spatial patterns of sea surface temperature(SST)and precipitation centers to include their annual cycles,in addition to the lower-level wind fields in the EASM region.However,it exhibits a weakened and eastward-shifted Western Pacific Subtropical High(WPSH),resulting in an associated precipitation bias.SYCIM2.0 robustly captures the dominant mode of the EASM and its close relationship with the El Niño-Southern Oscillation(ENSO)but exhibits relatively poor performance in simulating the second leading mode and the associated air–sea interaction processes.Further comprehensive evaluations of SYCIM2.0 will be conducted in future studies.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA14020102)the National Natural Science Foundation of China(Nos.41774125,41530320,41904104)+1 种基金the Key National Research Project of China(No.2018YFC0603300)the S&T Program of Beijing(No.Z181100005718001).
文摘We propose a new 3D inversion scheme to invert the near-and transition-zone data of CSAMT with topography accurately.In this new method,the earth was discretized into unstructured tetrahedra to fit the ragged topography and the vector fi nite-element method was adopted to obtain precise responses and good sensitivity.To simulate the attitude and shape of the transmitter,we divided a long-grounded transmitter into dipoles and integrated these dipoles to obtain good responses in the near-and transition-fi eld zones.Next,we designed an L2 norm-based objective functional and applied a standard quasi-Newton method as the optimization method to solve the inverse problem and guarantee steady convergence.We tested our 3D inversion method first on synthetic data and then on a field dataset acquired from select sites near Changbai Mountain,China.In both tests,the new inversion algorithm achieved excellent fitting between the predicted and observed data,even in near-and transition-fi eld zones,and the inversion results agreed well with the true model.These fi ndings reveal that the proposed algorithm is eff ective for 3D inversion of CSAMT data.
基金supported by the National Natural Science Foundation of China(Grants 51476152,11302213,and 11572336)
文摘An efficient high-order numerical method for supersonic reactive flows is proposed in this article.The reactive source term and convection term are solved separately by splitting scheme.In the reaction step,an adaptive time-step method is presented,which can improve the efficiency greatly.In the convection step,a third-order accurate weighted essentially non-oscillatory(WENO)method is adopted to reconstruct the solution in the unstructured grids.Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids,while high order accuracy can be achieved in the smooth region.In addition,the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.