The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theor...The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows.展开更多
Transonic flow over a thin airfoil at low Reynolds number was studied numerically by directly solving two-dimensional full Navier-Stokes equations through 5th order weighted essentially non-oscillatory(WENO) scheme wi...Transonic flow over a thin airfoil at low Reynolds number was studied numerically by directly solving two-dimensional full Navier-Stokes equations through 5th order weighted essentially non-oscillatory(WENO) scheme without using any turbulence model.A series of distinguished unsteady phenomena for a thin 2-D transonic airfoil flow were presented.Due to continuous adverse pressure gradient in the subsonic flow downstream of the sonic line,the unsteady separated boundary layer with main vortex and secondary vortex was developed at the rear of the airfoil.At the trailing edge,the vortex-shedding was characterized by periodical connection of the main vortex and secondary vortex on the other side of the airfoil.The unsteady separation and vortex-shedding occurred with the same period.On the airfoil surface,the average pulse pressure related to the unsteady supersonic region was obviously smaller than that related to the vortex-shedding at the trailing edge.With the attack angle increasing from 0°to 2°,the frequency of vortex-shedding decreases about 4.2%.At last,the turbulence intensity and many second-order statistics in the wake region were investigated.展开更多
Flow visualization was used to investigate experimentally the evolution process from symmetrical shedding to staggered shedding of the starting vortex and the phenomenon of secondary separation on an elliptic cylinder...Flow visualization was used to investigate experimentally the evolution process from symmetrical shedding to staggered shedding of the starting vortex and the phenomenon of secondary separation on an elliptic cylinder at moderate Reynolds numbers.The vortex structure of the flow separation was studied.The temporal variation of separation angle and length of wake vortex were given. The photographs and experimental results provided basis for further investigation of the complicated feature of the starting process of unsteady separated flows around an elliptic cylinder.展开更多
The finite difference method (FDM) is applied in the present paper to solve the unsteady NHS equations for incompressible fluids. ADI and SLOR methods are served for the vorticity equation and the Poisson equation for...The finite difference method (FDM) is applied in the present paper to solve the unsteady NHS equations for incompressible fluids. ADI and SLOR methods are served for the vorticity equation and the Poisson equation for ψ respectively. The upwind scheme is used for the convective terms. The moving boundary conditions are specially treated, and the effects of outlet conditions on the flow field are abo examined. Numerical results obtained show that the spoiler's oscillation induces forming, growing and shedding of the vortices. The shedding frequency of vortices is equal to that of the spoiler's oscillation. The forced unsteady separated flows under the present investigation depend mainly on the reduced frequency. At low reduced frequency, the vortices shed from the spoiler interact weakly with each other, and move downstream at an almost uniform speed of 038 V∞. At high reduced frequency, the interaction between the adjacent vortices strengthens. They close up to and rotate around each other, and eventually, merge into one vortex.展开更多
In the present paper,numerical solution of the two-dimensional unsteady Navier-Stokes equations is used to study the forced shear flow induced by a spoiler's periodical up and down oscillation on a flat plate.The ...In the present paper,numerical solution of the two-dimensional unsteady Navier-Stokes equations is used to study the forced shear flow induced by a spoiler's periodical up and down oscillation on a flat plate.The paper studies the evolution of growing,shedding,merging and decaying of vortices due to the spoiler's oscillation,particularly the dependence of the forced shear flow on the re- duced frequency.Results show that the reduced frequency is a key factor in controlling the growing and the shedding of vortices in the shear layer.The instantaneous streamlines and the equi-vorticity con- tours,as well as the surface pressure distributions,have also been investigated.Numerical results agree well with corresponding experimental ones.The study is helpful for understanding the physical mecha- nism of shear flow control.展开更多
During the initial stage of vertical launch,a missile may exhibit an uncertain roll angle(φ)and a high angle of attack(α).This study focuses on examining the impact of roll angle variations on the flow field and the...During the initial stage of vertical launch,a missile may exhibit an uncertain roll angle(φ)and a high angle of attack(α).This study focuses on examining the impact of roll angle variations on the flow field and the unsteady aerodynamics of a canard-configured missile atα=75°.Simulations were performed using the validated k-ωSST turbulence model.The analysis encompasses the temporal development of vortices,the oscillatory characteristics of the lateral force,and the fluctuation of kinetic energy distribution within the framework of proper orthogonal decomposition(POD).The results indicate that the flow field surrounding the canardconfigured missile is characterized by inconsistent shedding cycles of Kármán-like and canard-separated vortices.A distinct transition zone is identified between these vortices,where vortex tearing and reconnection phenomena occur.With increasing roll angles from 0°to 45°,there is an observed shift in the dominant frequency of the lateral force from the higher frequency associated with Kármán-like vortex shedding to the lower frequency of canard vortex shedding.The shedding frequency of Kármán-like vortices corresponds to the harmonics of the canard vortex shedding frequency,indicative of a higher-order harmonic resonance.The frequency of the lateral force is observed to decrease with an increase in roll angle,except in configurations lacking distinct canard-separated vortices,which are characterized by a“+”shape.The POD analysis reveals that the majority of the fluctuation energy is concentrated in the oscillations and shedding of the canard-separated vortices,leading to pressure fluctuations that are primarily observed on the canard and the downstream region of the canard.展开更多
Flow of two immiscible fluids gives rise to variety of flow patterns,which influence transportation process.In this work,we present detailed analysis on the prediction of flow pattern maps and radial distribution of v...Flow of two immiscible fluids gives rise to variety of flow patterns,which influence transportation process.In this work,we present detailed analysis on the prediction of flow pattern maps and radial distribution of volume fraction,pressure and velocity of a pair of immiscible liquids through a horizontal pipeline by computational fluid dynamics(CFD) simulation using ANSYS FLUENT 6.3.Moderately viscous oil and water have been taken as the fluid pair for study.Volume of fluid(VOF) method has been employed to predict various flow patterns by assuming unsteady flow,immiscible liquid pair,constant liquid properties,and co-axial flow.From the grid independent study,we have selected 47 037 number of quadrilateral mesh elements for the entire geometry.Simulation successfully predicts almost all the flow patterns(viz.,plug,slug,stratified wavy,stratified mixed and annular),except dispersion of oil in water and dispersion of water in oil.The simulated results are validated with experimental results of oil volume fraction and flow pattern map.Radial distribution of volume fraction,pressure and velocity profiles describe the nature of the stratified wavy,stratified mixed and annular flow pattern.These profiles help to developing the phenomenological correlations of interfacial characteristics in two-phase flow.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11372340 and 11732016)
文摘The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows.
基金Programme of Introducing Talents of Discipline to Universities(B08009)
文摘Transonic flow over a thin airfoil at low Reynolds number was studied numerically by directly solving two-dimensional full Navier-Stokes equations through 5th order weighted essentially non-oscillatory(WENO) scheme without using any turbulence model.A series of distinguished unsteady phenomena for a thin 2-D transonic airfoil flow were presented.Due to continuous adverse pressure gradient in the subsonic flow downstream of the sonic line,the unsteady separated boundary layer with main vortex and secondary vortex was developed at the rear of the airfoil.At the trailing edge,the vortex-shedding was characterized by periodical connection of the main vortex and secondary vortex on the other side of the airfoil.The unsteady separation and vortex-shedding occurred with the same period.On the airfoil surface,the average pulse pressure related to the unsteady supersonic region was obviously smaller than that related to the vortex-shedding at the trailing edge.With the attack angle increasing from 0°to 2°,the frequency of vortex-shedding decreases about 4.2%.At last,the turbulence intensity and many second-order statistics in the wake region were investigated.
基金The project supported by the National Natural Science Foundation of China.
文摘Flow visualization was used to investigate experimentally the evolution process from symmetrical shedding to staggered shedding of the starting vortex and the phenomenon of secondary separation on an elliptic cylinder at moderate Reynolds numbers.The vortex structure of the flow separation was studied.The temporal variation of separation angle and length of wake vortex were given. The photographs and experimental results provided basis for further investigation of the complicated feature of the starting process of unsteady separated flows around an elliptic cylinder.
基金The project is supported by the National Nature Science Foundation of China(NNSFC)
文摘The finite difference method (FDM) is applied in the present paper to solve the unsteady NHS equations for incompressible fluids. ADI and SLOR methods are served for the vorticity equation and the Poisson equation for ψ respectively. The upwind scheme is used for the convective terms. The moving boundary conditions are specially treated, and the effects of outlet conditions on the flow field are abo examined. Numerical results obtained show that the spoiler's oscillation induces forming, growing and shedding of the vortices. The shedding frequency of vortices is equal to that of the spoiler's oscillation. The forced unsteady separated flows under the present investigation depend mainly on the reduced frequency. At low reduced frequency, the vortices shed from the spoiler interact weakly with each other, and move downstream at an almost uniform speed of 038 V∞. At high reduced frequency, the interaction between the adjacent vortices strengthens. They close up to and rotate around each other, and eventually, merge into one vortex.
文摘In the present paper,numerical solution of the two-dimensional unsteady Navier-Stokes equations is used to study the forced shear flow induced by a spoiler's periodical up and down oscillation on a flat plate.The paper studies the evolution of growing,shedding,merging and decaying of vortices due to the spoiler's oscillation,particularly the dependence of the forced shear flow on the re- duced frequency.Results show that the reduced frequency is a key factor in controlling the growing and the shedding of vortices in the shear layer.The instantaneous streamlines and the equi-vorticity con- tours,as well as the surface pressure distributions,have also been investigated.Numerical results agree well with corresponding experimental ones.The study is helpful for understanding the physical mecha- nism of shear flow control.
基金Fund of Science and Technology on Underwater Information and Control Laboratory,Grant/Award Number:2021-JCJQ-LB-030-05。
文摘During the initial stage of vertical launch,a missile may exhibit an uncertain roll angle(φ)and a high angle of attack(α).This study focuses on examining the impact of roll angle variations on the flow field and the unsteady aerodynamics of a canard-configured missile atα=75°.Simulations were performed using the validated k-ωSST turbulence model.The analysis encompasses the temporal development of vortices,the oscillatory characteristics of the lateral force,and the fluctuation of kinetic energy distribution within the framework of proper orthogonal decomposition(POD).The results indicate that the flow field surrounding the canardconfigured missile is characterized by inconsistent shedding cycles of Kármán-like and canard-separated vortices.A distinct transition zone is identified between these vortices,where vortex tearing and reconnection phenomena occur.With increasing roll angles from 0°to 45°,there is an observed shift in the dominant frequency of the lateral force from the higher frequency associated with Kármán-like vortex shedding to the lower frequency of canard vortex shedding.The shedding frequency of Kármán-like vortices corresponds to the harmonics of the canard vortex shedding frequency,indicative of a higher-order harmonic resonance.The frequency of the lateral force is observed to decrease with an increase in roll angle,except in configurations lacking distinct canard-separated vortices,which are characterized by a“+”shape.The POD analysis reveals that the majority of the fluctuation energy is concentrated in the oscillations and shedding of the canard-separated vortices,leading to pressure fluctuations that are primarily observed on the canard and the downstream region of the canard.
文摘Flow of two immiscible fluids gives rise to variety of flow patterns,which influence transportation process.In this work,we present detailed analysis on the prediction of flow pattern maps and radial distribution of volume fraction,pressure and velocity of a pair of immiscible liquids through a horizontal pipeline by computational fluid dynamics(CFD) simulation using ANSYS FLUENT 6.3.Moderately viscous oil and water have been taken as the fluid pair for study.Volume of fluid(VOF) method has been employed to predict various flow patterns by assuming unsteady flow,immiscible liquid pair,constant liquid properties,and co-axial flow.From the grid independent study,we have selected 47 037 number of quadrilateral mesh elements for the entire geometry.Simulation successfully predicts almost all the flow patterns(viz.,plug,slug,stratified wavy,stratified mixed and annular),except dispersion of oil in water and dispersion of water in oil.The simulated results are validated with experimental results of oil volume fraction and flow pattern map.Radial distribution of volume fraction,pressure and velocity profiles describe the nature of the stratified wavy,stratified mixed and annular flow pattern.These profiles help to developing the phenomenological correlations of interfacial characteristics in two-phase flow.