Weak axisymmetrical fountains resulting from the injection of a dense fluid upwards into a large container of homogeneous fluid of lower density has been studied numerically in this paper using a time-accurate finite ...Weak axisymmetrical fountains resulting from the injection of a dense fluid upwards into a large container of homogeneous fluid of lower density has been studied numerically in this paper using a time-accurate finite volume scheme. The behaviour of fountains for both the uniform and parabolic profiles of the discharge velocity at the fountain source has been investigated. The evolution of transient fountain flow has been analysed and two distinct stages of evolution have been identified. The time trace of the position of the fountain front has been presented and the initial, temporary and final fountain height and fountain width have been determined.展开更多
High-order accurate schemes are employed to numerically simulate the interaction of a supersonic jet and a co-directional supersonic inflow. A double backward-facing step model is proposed to investigate the interacti...High-order accurate schemes are employed to numerically simulate the interaction of a supersonic jet and a co-directional supersonic inflow. A double backward-facing step model is proposed to investigate the interaction between the jet shear layer and the supersonic inflow shear layer. It is found that due to the interaction of the shear layer, a secondary jet is injected into the recirculation zone at the intersection of the two shear layers. The secondary jet produced by the interaction of the two shear layers has a periodicity because of shear layers interaction. The distinction in the shape of double backward-facing steps will induce changes in the period of the secondary jet. The analysis and discussion of the periodicity of the secondary jet are mainly focused in this letter.展开更多
文摘Weak axisymmetrical fountains resulting from the injection of a dense fluid upwards into a large container of homogeneous fluid of lower density has been studied numerically in this paper using a time-accurate finite volume scheme. The behaviour of fountains for both the uniform and parabolic profiles of the discharge velocity at the fountain source has been investigated. The evolution of transient fountain flow has been analysed and two distinct stages of evolution have been identified. The time trace of the position of the fountain front has been presented and the initial, temporary and final fountain height and fountain width have been determined.
基金supported by the National Key Research and Development Program of China(Grant 2016YFA0401201)the National Natural Science Foundation of China(Grants 11872066,11472281,11727901,and 11532014)。
文摘High-order accurate schemes are employed to numerically simulate the interaction of a supersonic jet and a co-directional supersonic inflow. A double backward-facing step model is proposed to investigate the interaction between the jet shear layer and the supersonic inflow shear layer. It is found that due to the interaction of the shear layer, a secondary jet is injected into the recirculation zone at the intersection of the two shear layers. The secondary jet produced by the interaction of the two shear layers has a periodicity because of shear layers interaction. The distinction in the shape of double backward-facing steps will induce changes in the period of the secondary jet. The analysis and discussion of the periodicity of the secondary jet are mainly focused in this letter.