Convectively unstable processes caused by dense water subsidence are common occurrences in high-latitude oceanic regions,and significantly modulate mass and heat transport and mixing processes in the ocean.An idealize...Convectively unstable processes caused by dense water subsidence are common occurrences in high-latitude oceanic regions,and significantly modulate mass and heat transport and mixing processes in the ocean.An idealized numerical experiment using the large eddy simulation method was conducted to analyze the three-dimensional flow field structure and the mechanism for dense water subsidence.Specifically,a negative salt flux is set at the sea surface,in which salt flux enters the sea surface to simulate the icing and salting-out phenomena that occur at high latitudes.Results show that the mean-state 3D flow field of dense water subsidence exhibits a hollow conical distribution.The horizontal flow field is characterized by a cyclonic vortex that driven primarily by the pressure gradient and influenced by the Coriolis effect.Moreover,the inverse vertical pressure gradient generated by this vortex inhibits the sinking of the plume,leading to its off-axis deflection and the development of an anticyclonic precession.In addition,the impact of rotation on the structure of a sinking plume within a stratified environment is discussed.Both horizontal vortex intensity and cone angle of the hollow cone flow field are increased with increasing rotation rate,resulting in a decrease in the plume’s maximum sinking depth.Variances in rotation direction cause the horizontal vortex and sinking plumes of dense water in the northern and southern hemispheres to rotate in opposite directions.展开更多
This paper addresses a unified approach of the PID controller design for low as well as high order unstable processes with time delay.The design method is based on the direct synthesis(DS)approach to achieve the enhan...This paper addresses a unified approach of the PID controller design for low as well as high order unstable processes with time delay.The design method is based on the direct synthesis(DS)approach to achieve the enhanced load disturbance rejection.To improve the servo response,a two-degree of freedom control scheme has been considered.A suitable guideline has been provided to select the desired reference model in the DS scheme.The direct synthesis controller has been approximated to the PID controller using the frequency response matching method.A consistently better performance has been obtained in comparison with the recently reported methods.展开更多
The Atlantic Meridional Overturning Circulation(AMOC)serves as an important conduit for poleward heat transport in the global ocean,playing a crucial role in regulating global climate.However,biases have been found in...The Atlantic Meridional Overturning Circulation(AMOC)serves as an important conduit for poleward heat transport in the global ocean,playing a crucial role in regulating global climate.However,biases have been found in multi-model simulations of AMOC,particularly due to inaccuracies in convective mixing parameterization,which leads to an overestimation of convective mixing depth in the Labrador Sea and Nordic Seas.This excessive deep convection results in stronger simulated AMOC transport compared to observations.Therefore,this study employs the Large Eddy Simulation(LES)method to simulate the sinking process of dense water using a series of idealized experiments with various sea surface salt flux,latitude,and ocean stratification.The results show that increased salt flux forcing and weakened background stratification both enhance the sinking of dense water,with geographical location(latitude)exerting a discernable impact.Based on these insights,the eddy viscosity coefficient,which characterizes vertical convective mixing in the parameterization scheme,is refined,with adjustments to its vertical structure and the incorporation of latitude dependence.It is preliminarily applied to simulate AMOC using the Community Earth System Model(CESM).The results demonstrate improvements in the simulation accuracy of seawater temperature at the near-surface and deep layers.Including the parameterization scheme of dense water sinking in the model leads to a reduction in the simulated intensity of AMOC at 26.5°N.In the high-latitude North Atlantic,the modification implemented in parameterization results in notable improvements in the simulation of seawater temperature,salinity,and density,with respective reductions in their root mean square errors of 4.36%,19.77%,and 1.84%.展开更多
An IMC-PID controller was proposed for unstable second-order time delay system which shows the characteristics of inverse response(RHP zero). A plot of Ms versus λ was suggested to calculate the suitable tuning param...An IMC-PID controller was proposed for unstable second-order time delay system which shows the characteristics of inverse response(RHP zero). A plot of Ms versus λ was suggested to calculate the suitable tuning parameter λ, which provides a trade-off between performance and robustness. Six different forms of process models were selected from literature to show the applicability of the present method. Performance of controller was calculated by ITAE and total variation TV and compared with recently published tuning rules. Undesirable overshoot was removed by using a set-point weighting parameter. Robustness was tested by introducing a perturbation into the various model parameters and closed-loop results show that the designed controller is robust in the case of model uncertainty. The proposed method shows an overall better closed-loop response as compared to other recently reported methods.展开更多
The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance...The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.展开更多
Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few s...Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few scholars have explored the unstable evolution of railway slopes under the joint action of rainfall-vibration.Based on the model test of sandy soil slope,the unstable evolution process of slope under locomotive vibration,rainfall,and rainfall-vibration joint action conditions was simulated in this paper.By comparing and analyzing the variation trends of soil pressure and water content of slope under these conditions,the change laws of pore pressure under the influence of vibration and rainfall were explored.The main control factors affecting the stability of slope structure under the joint action conditions were further defined.Combined with the slope failure phenomena under these three conditions,the causes of slope instability resulting from each leading factor were clarified.Finally,according to the above conclusions,the unstable evolution of the slope under the rainfall-vibration joint action was determined.The test results show that the unstable evolution process of sandy soil slope,under the rainfall-vibration joint action,can be divided into:rainfall erosion cracking,vibration promotion penetrating,and slope instability sliding three stages.In the process of slope unstable evolution,rainfall and vibration play the roles of inducing and promoting slide respectively.In addition,the deep cracks,which are the premise for the formation of the sliding surface,and the violent irregular fluctuation of soil pressure,which reflects the near penetration of the sliding surface,constitute the instability characteristics of the railway slope together.This paper reveals the unstable evolution of sandy soil slopes under the joint action of rainfall-vibration,hoping to provide the theoretical basis for the early warning and prevention technology of railway slopes.展开更多
A time series x(t), t≥1, is said to be an unstable ARMA process if x(t) satisfies an unstableARMA model such asx(t)=a_1x(t-1)+a_2x(t-2)+…+a_8x(t-s)+w(t)where w(t) is a stationary ARMA process; and the characteristic...A time series x(t), t≥1, is said to be an unstable ARMA process if x(t) satisfies an unstableARMA model such asx(t)=a_1x(t-1)+a_2x(t-2)+…+a_8x(t-s)+w(t)where w(t) is a stationary ARMA process; and the characteristic polynomial A(z)=1-a_1z-a_2z^2-…-a_3z^3 has all roots on the unit circle. Asymptotic behavior of sum form 1 to n (x^2(t)) will be studied by showing somerates of divergence of sum form 1 to n (x^2(t)). This kind of properties Will be used for getting the rates of convergenceof least squares estimates of parameters a_1, a_2,…, a_?展开更多
基金Supported by the National Natural Science Foundation of China(Nos.42250710152,42192562)the Southern Laboratory of Ocean Science and Engineering(Guangdong Zhuhai)(No.SML 2020 SP 007)。
文摘Convectively unstable processes caused by dense water subsidence are common occurrences in high-latitude oceanic regions,and significantly modulate mass and heat transport and mixing processes in the ocean.An idealized numerical experiment using the large eddy simulation method was conducted to analyze the three-dimensional flow field structure and the mechanism for dense water subsidence.Specifically,a negative salt flux is set at the sea surface,in which salt flux enters the sea surface to simulate the icing and salting-out phenomena that occur at high latitudes.Results show that the mean-state 3D flow field of dense water subsidence exhibits a hollow conical distribution.The horizontal flow field is characterized by a cyclonic vortex that driven primarily by the pressure gradient and influenced by the Coriolis effect.Moreover,the inverse vertical pressure gradient generated by this vortex inhibits the sinking of the plume,leading to its off-axis deflection and the development of an anticyclonic precession.In addition,the impact of rotation on the structure of a sinking plume within a stratified environment is discussed.Both horizontal vortex intensity and cone angle of the hollow cone flow field are increased with increasing rotation rate,resulting in a decrease in the plume’s maximum sinking depth.Variances in rotation direction cause the horizontal vortex and sinking plumes of dense water in the northern and southern hemispheres to rotate in opposite directions.
文摘This paper addresses a unified approach of the PID controller design for low as well as high order unstable processes with time delay.The design method is based on the direct synthesis(DS)approach to achieve the enhanced load disturbance rejection.To improve the servo response,a two-degree of freedom control scheme has been considered.A suitable guideline has been provided to select the desired reference model in the DS scheme.The direct synthesis controller has been approximated to the PID controller using the frequency response matching method.A consistently better performance has been obtained in comparison with the recently reported methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250710152,42192562&42406022)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_1442)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)funded project(Grant No.SML2020SP007)。
文摘The Atlantic Meridional Overturning Circulation(AMOC)serves as an important conduit for poleward heat transport in the global ocean,playing a crucial role in regulating global climate.However,biases have been found in multi-model simulations of AMOC,particularly due to inaccuracies in convective mixing parameterization,which leads to an overestimation of convective mixing depth in the Labrador Sea and Nordic Seas.This excessive deep convection results in stronger simulated AMOC transport compared to observations.Therefore,this study employs the Large Eddy Simulation(LES)method to simulate the sinking process of dense water using a series of idealized experiments with various sea surface salt flux,latitude,and ocean stratification.The results show that increased salt flux forcing and weakened background stratification both enhance the sinking of dense water,with geographical location(latitude)exerting a discernable impact.Based on these insights,the eddy viscosity coefficient,which characterizes vertical convective mixing in the parameterization scheme,is refined,with adjustments to its vertical structure and the incorporation of latitude dependence.It is preliminarily applied to simulate AMOC using the Community Earth System Model(CESM).The results demonstrate improvements in the simulation accuracy of seawater temperature at the near-surface and deep layers.Including the parameterization scheme of dense water sinking in the model leads to a reduction in the simulated intensity of AMOC at 26.5°N.In the high-latitude North Atlantic,the modification implemented in parameterization results in notable improvements in the simulation of seawater temperature,salinity,and density,with respective reductions in their root mean square errors of 4.36%,19.77%,and 1.84%.
基金India (MHRD, India) for providing financial support
文摘An IMC-PID controller was proposed for unstable second-order time delay system which shows the characteristics of inverse response(RHP zero). A plot of Ms versus λ was suggested to calculate the suitable tuning parameter λ, which provides a trade-off between performance and robustness. Six different forms of process models were selected from literature to show the applicability of the present method. Performance of controller was calculated by ITAE and total variation TV and compared with recently published tuning rules. Undesirable overshoot was removed by using a set-point weighting parameter. Robustness was tested by introducing a perturbation into the various model parameters and closed-loop results show that the designed controller is robust in the case of model uncertainty. The proposed method shows an overall better closed-loop response as compared to other recently reported methods.
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the "KACST Annual Program" at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project number AT-32-41
文摘The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.42027806)the Key Programme of the Natural Science Foundation of China(Grant No.41630639)National Natural Science Foundation of China General Program(Grant No.42372324).
文摘Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few scholars have explored the unstable evolution of railway slopes under the joint action of rainfall-vibration.Based on the model test of sandy soil slope,the unstable evolution process of slope under locomotive vibration,rainfall,and rainfall-vibration joint action conditions was simulated in this paper.By comparing and analyzing the variation trends of soil pressure and water content of slope under these conditions,the change laws of pore pressure under the influence of vibration and rainfall were explored.The main control factors affecting the stability of slope structure under the joint action conditions were further defined.Combined with the slope failure phenomena under these three conditions,the causes of slope instability resulting from each leading factor were clarified.Finally,according to the above conclusions,the unstable evolution of the slope under the rainfall-vibration joint action was determined.The test results show that the unstable evolution process of sandy soil slope,under the rainfall-vibration joint action,can be divided into:rainfall erosion cracking,vibration promotion penetrating,and slope instability sliding three stages.In the process of slope unstable evolution,rainfall and vibration play the roles of inducing and promoting slide respectively.In addition,the deep cracks,which are the premise for the formation of the sliding surface,and the violent irregular fluctuation of soil pressure,which reflects the near penetration of the sliding surface,constitute the instability characteristics of the railway slope together.This paper reveals the unstable evolution of sandy soil slopes under the joint action of rainfall-vibration,hoping to provide the theoretical basis for the early warning and prevention technology of railway slopes.
文摘A time series x(t), t≥1, is said to be an unstable ARMA process if x(t) satisfies an unstableARMA model such asx(t)=a_1x(t-1)+a_2x(t-2)+…+a_8x(t-s)+w(t)where w(t) is a stationary ARMA process; and the characteristic polynomial A(z)=1-a_1z-a_2z^2-…-a_3z^3 has all roots on the unit circle. Asymptotic behavior of sum form 1 to n (x^2(t)) will be studied by showing somerates of divergence of sum form 1 to n (x^2(t)). This kind of properties Will be used for getting the rates of convergenceof least squares estimates of parameters a_1, a_2,…, a_?