Reynolds-averaged Navier-Stokes(RANS)turbulence modeling can lead to the excessive turbulence level around the interface in two-phase flow,which causes the unphysical motion of the interface in sloshing simulation.In ...Reynolds-averaged Navier-Stokes(RANS)turbulence modeling can lead to the excessive turbulence level around the interface in two-phase flow,which causes the unphysical motion of the interface in sloshing simulation.In order to avoid the unphysical motion of the interface,a novel eddy-viscosity eliminator based on sigmoid functions is designed to reduce the excessive turbulence level,and the eddy-viscosity eliminator based on polynomials is extracted from the cavitation simulations.Surface elevations by combining the eddy-viscosity eliminators and classical two-equation closure models are compared with the experiments,the ones by using the adaptive asymptotic model(AAM)and the ones by using the modified two-equation closure models.The root-mean-squared error(RMSE)is introduced to quantify the accuracies of surface elevations and the forces.The relation between the turbulence level in the transition layer and RMSEs of surface elevations is studied.Besides,the parametric analysis of the eddy-viscosity eliminators is carried out.The studies suggest that(1)the excessive turbulence level in the transition layer around the interface has a significant influence on the accuracies of surface elevations and the forces;(2)the eddy-viscosity eliminators can effectively reduce the excessive turbulence level in the transition layer to avoid the unphysical motion of the interface;(3)the k-ωSST model combined with the eddy-viscosity eliminators is appropriate for predicting surface elevations and forces in RANS simulations of sloshing flow.展开更多
The simulation of indentations with so called “equivalent” pseudo-cones for decreasing computer time is challenged. The mimicry of pseudo-cones having equal basal surface and depth with pyramidal indenters is exclud...The simulation of indentations with so called “equivalent” pseudo-cones for decreasing computer time is challenged. The mimicry of pseudo-cones having equal basal surface and depth with pyramidal indenters is excluded by basic arithmetic and trigonometric calculations. The commonly accepted angles of so called “equivalent” pseudo-cones must not also claim equal depth. Such bias (answers put into the questions to be solved) in the historical values of the generally used half-opening angles of pseudo-cones is revealed. It falsifies all simulations or conclusions on that basis. The enormous errors in the resulting hardness H<sub>ISO</sub> and elastic modulus E<sub>r-ISO</sub> values are disastrous not only for the artificial intelligence. The straightforward deduction for possibly ψ-cones (ψ for pseudo) without biased depths’ errors for equal basal surface and equal volume is reported. These ψ-cones would of course penetrate much more deeply than the three-sided Berkovich and cube corner pyramids (r a/2), and their half-opening angles would be smaller than those of the respective pyramids (reverse with r > a/2 for four-sided Vickers). Also the unlike forces’ direction angles are reported for the more sideward and the resulting downward directions. They are reflected by the diameter of the parallelograms with length and off-angle from the vertical axis. Experimental loading curves before and after the phase-transition onsets are indispensable. Mimicry of ψ-cones and pyramids is also quantitatively excluded. All simulations on their bases would also be dangerously invalid for industrial and solid pharmaceutical materials.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11802176,11802301)。
文摘Reynolds-averaged Navier-Stokes(RANS)turbulence modeling can lead to the excessive turbulence level around the interface in two-phase flow,which causes the unphysical motion of the interface in sloshing simulation.In order to avoid the unphysical motion of the interface,a novel eddy-viscosity eliminator based on sigmoid functions is designed to reduce the excessive turbulence level,and the eddy-viscosity eliminator based on polynomials is extracted from the cavitation simulations.Surface elevations by combining the eddy-viscosity eliminators and classical two-equation closure models are compared with the experiments,the ones by using the adaptive asymptotic model(AAM)and the ones by using the modified two-equation closure models.The root-mean-squared error(RMSE)is introduced to quantify the accuracies of surface elevations and the forces.The relation between the turbulence level in the transition layer and RMSEs of surface elevations is studied.Besides,the parametric analysis of the eddy-viscosity eliminators is carried out.The studies suggest that(1)the excessive turbulence level in the transition layer around the interface has a significant influence on the accuracies of surface elevations and the forces;(2)the eddy-viscosity eliminators can effectively reduce the excessive turbulence level in the transition layer to avoid the unphysical motion of the interface;(3)the k-ωSST model combined with the eddy-viscosity eliminators is appropriate for predicting surface elevations and forces in RANS simulations of sloshing flow.
文摘The simulation of indentations with so called “equivalent” pseudo-cones for decreasing computer time is challenged. The mimicry of pseudo-cones having equal basal surface and depth with pyramidal indenters is excluded by basic arithmetic and trigonometric calculations. The commonly accepted angles of so called “equivalent” pseudo-cones must not also claim equal depth. Such bias (answers put into the questions to be solved) in the historical values of the generally used half-opening angles of pseudo-cones is revealed. It falsifies all simulations or conclusions on that basis. The enormous errors in the resulting hardness H<sub>ISO</sub> and elastic modulus E<sub>r-ISO</sub> values are disastrous not only for the artificial intelligence. The straightforward deduction for possibly ψ-cones (ψ for pseudo) without biased depths’ errors for equal basal surface and equal volume is reported. These ψ-cones would of course penetrate much more deeply than the three-sided Berkovich and cube corner pyramids (r a/2), and their half-opening angles would be smaller than those of the respective pyramids (reverse with r > a/2 for four-sided Vickers). Also the unlike forces’ direction angles are reported for the more sideward and the resulting downward directions. They are reflected by the diameter of the parallelograms with length and off-angle from the vertical axis. Experimental loading curves before and after the phase-transition onsets are indispensable. Mimicry of ψ-cones and pyramids is also quantitatively excluded. All simulations on their bases would also be dangerously invalid for industrial and solid pharmaceutical materials.