期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Detection and Tracking of a UAV Based on Low-Frequency Communication Network
1
作者 Hongmei Shi Yifan Zhou +1 位作者 Mengxin Yang Dan Zeng 《Journal of Beijing Institute of Technology》 2025年第3期231-242,共12页
When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,includin... When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,including high vulnerability to target occlusion and shape variations,as well as pronounced false alarms and missed detections in low signal-to-noise ratio(SNR)envi-ronments.To address these issues,this paper proposes a UAV detection and tracking algorithm based on a low-frequency communication network.The accuracy and effectiveness of the algorithm are validated through simulation experiments using field-measured point cloud data.Additionally,the key parameters of the algorithm are optimized through a process of selection and comparison,thereby improving the algorithm's precision.The experimental results show that the improved algo-rithm can significantly enhance the detection and tracking performance of the UAV under high clutter density conditions,effectively reduce the false alarm rate and markedly improve overall tracking performance metrics. 展开更多
关键词 unmanned aerial vehicl(UAV)detection and tracking low-frequency communication network field-measurement data
在线阅读 下载PDF
Road boundary estimation to improve vehicle detection and tracking in UAV video 被引量:1
2
作者 张立业 彭仲仁 +1 位作者 李立 王华 《Journal of Central South University》 SCIE EI CAS 2014年第12期4732-4741,共10页
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no... Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively. 展开更多
关键词 road boundary detection vehicle detection and tracking airborne video unmanned aerial vehicle Dempster-Shafer theory
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部