期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Fixed-time Target-guided Coordinate Control of Unmanned Surface Vehicles Based on Dynamic Surface Control
1
作者 LI Chao−yi XU Hai−xiang +2 位作者 YU Wen−zhao DU Zhe DING Ya−nan 《船舶力学》 北大核心 2025年第6期849-862,共14页
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b... This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results. 展开更多
关键词 unmanned surface vehicle distributed control target-guided coordinate control fixed-time convergence dynamic surface control
在线阅读 下载PDF
Autonomous Navigation Algorithm for Underactuated Unmanned Surface Vehicle Based on Model Predictive Control
2
作者 CHEN Guoquan LI Yuqin +1 位作者 HUANG Zike YANG Shenhua 《Journal of Shanghai Jiaotong university(Science)》 2025年第6期1255-1264,共10页
To achieve the track following and collision avoidance of underactuated unmanned surface vehicle(USV),autonomous navigation model based on model predictive control is established by including the track offset,speed va... To achieve the track following and collision avoidance of underactuated unmanned surface vehicle(USV),autonomous navigation model based on model predictive control is established by including the track offset,speed variation and rule compliance as the evaluation functions and including the ship domain of dynamic/static navigation obstacles and the mechanical characteristics limitation as constraints.The effectiveness of the model for autonomous navigation of USV in the situation of multi-ship encounters and in the complex waters with both dynamic and static obstructions is verified by several groups of simulation work.The simulation results show that the proposed model can realize the autonomous navigation of the underactuated USV under the complex waters. 展开更多
关键词 underactuated unmanned surface vehicle(USV) model predictive control track offset speed variation rule compliance
原文传递
LSDA-APF:A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment 被引量:1
3
作者 Xiaoli Li Tongtong Jiao +2 位作者 Jinfeng Ma Dongxing Duan Shengbin Liang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期595-617,共23页
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ... In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account. 展开更多
关键词 unmanned surface vehicles local obstacle avoidance algorithm artificial potential field algorithm path planning collision detection
在线阅读 下载PDF
Development and Missions of Unmanned Surface Vehicle 被引量:76
4
作者 严汝建 庞硕 +1 位作者 孙寒冰 庞永杰 《Journal of Marine Science and Application》 2010年第4期451-457,共7页
The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that ope... The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service. 展开更多
关键词 unmanned surface vehicle littoral combat ship surveillance and reconnaissance unmanned combat system mine countermeasures
在线阅读 下载PDF
A Review of Current Research and Advances in Unmanned Surface Vehicles 被引量:16
5
作者 Xiangen Bai Bohan Li +1 位作者 Xiaofeng Xu Yingjie Xiao 《Journal of Marine Science and Application》 CSCD 2022年第2期47-58,共12页
Following developments in artificial intelligence and big data technology,the level of intelligence in intelligent vessels has been improved.Intelligent vessels are being developed into unmanned surface vehicles(USVs)... Following developments in artificial intelligence and big data technology,the level of intelligence in intelligent vessels has been improved.Intelligent vessels are being developed into unmanned surface vehicles(USVs),which have widely interested scholars in the shipping industry due to their safety,high efficiency,and energy-saving qualities.Considering the current development of USVs,the types of USVs and applications domestically and internationally are being investigated.USVs emerged with technological developments and their characteristics show some differences from traditional vessels,which brings some problems and advantages for their application.Certain maritime regulations are not applicable to USVs and must be changed.The key technologies in the current development of USVs are being investigated.While the level of intelligence is improving,the protection of cargo cannot be neglected.An innovative approach to the internal structure of USVs is proposed,where the inner hull can automatically recover its original state in case of outer hull tilting.Finally,we summarize the development status of USVs,which are an inevitable direction of development in the marine field. 展开更多
关键词 unmanned surface vehicle Maritime supervision Intelligent vessel Ship automation level Internal structure Shipping industry
在线阅读 下载PDF
Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties 被引量:10
6
作者 廖煜雷 张铭钧 +1 位作者 万磊 李晔 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期370-378,共9页
The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturban... The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller. 展开更多
关键词 trajectory tracking UNDERACTUATED unmanned surface vehicle (USV) BACKSTEPPING dynamic sliding mode control
在线阅读 下载PDF
Path Planning Method Based on D^(*) lite Algorithm for Unmanned Surface Vehicles in Complex Environments 被引量:9
7
作者 YAO Yan-long LIANG Xiao-feng +4 位作者 LI Ming-zhi YU Kai CHEN Zhe NI Chong-ben TENG Yue 《China Ocean Engineering》 SCIE EI CSCD 2021年第3期372-383,共12页
In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs a... In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs are either too slow at replanning or unreliable in changing environments with multiple dynamic obstacles.In this study,we developed a novel path planning method based on the D^(*) lite algorithm for real-time path planning of USVs in complex environments.The proposed method has the following advantages:(1)the computational time for replanning is reduced significantly owing to the use of an incremental algorithm and a new method for modelling dynamic obstacles;(2)a constrained artificial potential field method is employed to enhance the safety of the planned paths;and(3)the method is practical in terms of vehicle performance.The performance of the proposed method was evaluated through simulations and compared with those of existing algorithms.The simulation results confirmed the efficiency of the method for real-time path planning of USVs in complex environments. 展开更多
关键词 path planning unmanned surface vehicle D^(*)lite algorithm complex environment
在线阅读 下载PDF
Trajectory planning and tracking control for underactuated unmanned surface vessels 被引量:8
8
作者 廖煜雷 苏玉民 曹建 《Journal of Central South University》 SCIE EI CAS 2014年第2期540-549,共10页
The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for u... The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller. 展开更多
关键词 trajectory tracking STABILIZATION underactuated unmanned surface vessel BACKSTEPPING
在线阅读 下载PDF
Dynamic modeling of wave driven unmanned surface vehicle in longitudinal profile based on D-H approach 被引量:8
9
作者 田宝强 俞建成 张艾群 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4578-4584,共7页
Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling i... Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis.In this work,the multibody system of WUSV was described based on D-H approach.Then,the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics.Finally,the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state.Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process,and the results are consistent with the wave theory. 展开更多
关键词 wave driven unmanned surface vehicle D-H approach Lagrangian mechanics dynamic analysis
在线阅读 下载PDF
Radar-Based Collision Avoidance for Unmanned Surface Vehicles' 被引量:5
10
作者 庄佳园 张磊 +3 位作者 赵士奇 曹建 王博 孙寒冰 《China Ocean Engineering》 SCIE EI CSCD 2016年第6期867-883,共17页
Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accu... Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into real- time marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing. 展开更多
关键词 unmanned surface vehicle (USV) marine radar collision avoidance
在线阅读 下载PDF
IAP's Solar-Powered Unmanned Surface Vehicle Actively Passes through the Center of typhoon Sinlaku(2020) 被引量:5
11
作者 Hongbin CHEN Jun LI +6 位作者 Wenying HE Shuqing MA Yingzhi WEI Jidong PAN Yu ZHAO Xuefen ZHANG Shuzhen HU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第4期538-545,共8页
The solar-powered marine unmanned surface vehicle(USV) developed by the USV team of the Institute of Atmospheric Physics is a rugged, long-duration, and autonomous navigation vessel designed for the collection of long... The solar-powered marine unmanned surface vehicle(USV) developed by the USV team of the Institute of Atmospheric Physics is a rugged, long-duration, and autonomous navigation vessel designed for the collection of longrange, continuous, real-time, meteorological and oceanographic measurements, especially under extreme sea conditions(sea state 6–7). These solar-powered USVs completed a long-term continuous navigation observation test over 26 days.During this time, they coordinated double-USV observations and actively navigated into the path of Typhoon Sinlaku(2020) before collecting data very close to its center during the 2020 USV South China Sea Typhoon Observation Experiment. Detailed high temporal resolution(1 min) real-time observations collected by the USV on the typhoon were used for operational typhoon forecasting and warning for the first time. As a mobile meteorological and oceanographic observation station capable of reliable, automated deployment, data collection, and transmission, such solar-powered USVs can replace traditional observation platforms to provide valuable real-time data for research, forecasting, and early warnings for potential marine meteorological disasters. 展开更多
关键词 solar-powered unmanned surface vehicle TYPHOON meteorological and oceanographic observation
在线阅读 下载PDF
LSTM-DPPO based deep reinforcement learning controller for path following optimization of unmanned surface vehicle 被引量:3
12
作者 XIA Jiawei ZHU Xufang +1 位作者 LIU Zhong XIA Qingtao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1343-1358,共16页
To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal po... To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal policy opti-mization(DPPO)algorithm,which is a modified actor-critic-based type of reinforcement learning algorithm,is adapted to improve the controller performance in repeated trials.The LSTM network structure is introduced to solve the strong temporal cor-relation USV control problem.In addition,a specially designed path dataset,including straight and curved paths,is established to simulate various sailing scenarios so that the reinforcement learning controller can obtain as much handling experience as possible.Extensive numerical simulation results demonstrate that the proposed method has better control performance under missions involving complex maneuvers than trained with limited scenarios and can potentially be applied in practice. 展开更多
关键词 unmanned surface vehicle(USV) deep reinforce-ment learning(DRL) path following path dataset proximal po-licy optimization long short-term memory(LSTM)
在线阅读 下载PDF
Serret-Frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties 被引量:13
13
作者 廖煜雷 张铭钧 万磊 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期214-223,共10页
The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, externa... The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller. 展开更多
关键词 path following underactuated unmanned surface vehicle backstepping dynamic sliding mode control
在线阅读 下载PDF
Cooperative multi-target hunting by unmanned surface vehicles based on multi-agent reinforcement learning 被引量:2
14
作者 Jiawei Xia Yasong Luo +3 位作者 Zhikun Liu Yalun Zhang Haoran Shi Zhong Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期80-94,共15页
To solve the problem of multi-target hunting by an unmanned surface vehicle(USV)fleet,a hunting algorithm based on multi-agent reinforcement learning is proposed.Firstly,the hunting environment and kinematic model wit... To solve the problem of multi-target hunting by an unmanned surface vehicle(USV)fleet,a hunting algorithm based on multi-agent reinforcement learning is proposed.Firstly,the hunting environment and kinematic model without boundary constraints are built,and the criteria for successful target capture are given.Then,the cooperative hunting problem of a USV fleet is modeled as a decentralized partially observable Markov decision process(Dec-POMDP),and a distributed partially observable multitarget hunting Proximal Policy Optimization(DPOMH-PPO)algorithm applicable to USVs is proposed.In addition,an observation model,a reward function and the action space applicable to multi-target hunting tasks are designed.To deal with the dynamic change of observational feature dimension input by partially observable systems,a feature embedding block is proposed.By combining the two feature compression methods of column-wise max pooling(CMP)and column-wise average-pooling(CAP),observational feature encoding is established.Finally,the centralized training and decentralized execution framework is adopted to complete the training of hunting strategy.Each USV in the fleet shares the same policy and perform actions independently.Simulation experiments have verified the effectiveness of the DPOMH-PPO algorithm in the test scenarios with different numbers of USVs.Moreover,the advantages of the proposed model are comprehensively analyzed from the aspects of algorithm performance,migration effect in task scenarios and self-organization capability after being damaged,the potential deployment and application of DPOMH-PPO in the real environment is verified. 展开更多
关键词 unmanned surface vehicles Multi-agent deep reinforcement learning Cooperative hunting Feature embedding Proximal policy optimization
在线阅读 下载PDF
A novel ocean bathymetry technology based on an unmanned surface vehicle 被引量:2
15
作者 JIN Jiucai ZHANG Jie +2 位作者 SHAO Feng LYU Zhichao WANG Dong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第9期99-106,共8页
In ocean bathymetry, the instantaneous depth measured by survey ships or by unmanned surface vehicles(USVs)cannot be directly taken as the chart depth because of the effect of waves and the tide. A novel ocean bathy... In ocean bathymetry, the instantaneous depth measured by survey ships or by unmanned surface vehicles(USVs)cannot be directly taken as the chart depth because of the effect of waves and the tide. A novel ocean bathymetry technology is proposed based on the USV, the aim is to evaluate the potential of the USV using a real-time kinematic(RTK) and a single beam echo sounder for ocean bathymetry. First, using the RTK height of the USV with centimeter-level precision, the height of the sea level is obtained by excluding wave information using a low pass filter. Second, the datum distance between the reference ellipsoid and the chart depth is obtained by a novel method using tide tables and the height of the sea level from the USV. Previous work has usually achieved this using long-term tidal observation from traditional investigations. Finally, the chart depth is calculated using the transformation between the instantaneous depth of the USV measurement and the datum of the chart depth.Experiments were performed around the Wuzhizhou Island in Hainan Province using the unmanned surface bathymetry vehicle to validate the proposed technology. The successful results indicate the potential of the bathymetry technology based on the USV. 展开更多
关键词 unmanned surface vehicle bathymetry attitude correction tidal observation
在线阅读 下载PDF
Modeling and Simulation of Automatic Berthing based on Bow and Stern Thruster Assist for Unmanned Surface Vehicle 被引量:1
16
作者 Gongxing Wu Xiaolong Zhao Linling Wang 《Journal of Marine Science》 2021年第2期16-21,共6页
In order to solve the technical problems of autonomous berthing of the Unmanned Surface Vehicle(USV),this research has met the requirements of maneuverability berthing under different conditions by effectively using t... In order to solve the technical problems of autonomous berthing of the Unmanned Surface Vehicle(USV),this research has met the requirements of maneuverability berthing under different conditions by effectively using the bow and stern thrusters,which is a technological breakthrough in actual production and life.Based on the MMG model,the maneuverability mathematical model of the USV with bow and stern thruster was established.And the motion simulation of USV maneuvering was carried out through the numerical simulation calculation.Then the berthing plan was designed based on the maneuverability analysis of the USV low-speed motion,and the simulation of automatic berthing for USV was carried out.The research results of this paper can be of certain practical significance for the USV based on the support of the bow and stern thruster in the berthing.At the same time,it also provides a certain theoretical reference for the handling of the USV automatic berthing. 展开更多
关键词 Automatic berthing unmanned surface vehicle Mathematical model Computer simulation
在线阅读 下载PDF
Interpolation Technique for the Underwater DEM Generated by an Unmanned Surface Vessel
17
作者 Shiwei Qin Zili Dai 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3157-3172,共16页
High-resolution underwater digital elevation models(DEMs)are important for water and soil conservation,hydrological analysis,and river channel dredging.In this work,the underwater topography of the Panjing River in Sh... High-resolution underwater digital elevation models(DEMs)are important for water and soil conservation,hydrological analysis,and river channel dredging.In this work,the underwater topography of the Panjing River in Shanghai,China,was measured by an unmanned surface vessel.Five different interpolation methods were used to generate the underwater DEM and their precision and applicability for different underwater landforms were analyzed through cross-validation.The results showed that there was a positive correlation between the interpolation error and the terrain surface roughness.The five interpolation methods were all appropriate for the survey area,but their accuracy varied with different surface roughness.Based on the analysis results,an integrated approach was proposed to automatically select the appropriate interpolation method according to the different surface roughness in the surveying area.This approach improved the overall interpolation precision.The suggested technique provides a reference for the selection of interpolationmethods for underwater DEMdata. 展开更多
关键词 Underwater DEM interpolation technique unmanned surface vessel surface roughness
在线阅读 下载PDF
Global path planning and waypoint following for heterogeneous unmanned surface vehicles assisting inland water monitoring
18
作者 Liang Zhao Yong Bai Jeom Kee Paik 《Journal of Ocean Engineering and Science》 2025年第1期88-108,共21页
The idea of dispatching multiple unmanned surface vehicles(USVs)to undertake marine missions has ignited a burgeoning enthusiasm on a global scale.Embarking on a quest to facilitate inland water monitoring,this paper ... The idea of dispatching multiple unmanned surface vehicles(USVs)to undertake marine missions has ignited a burgeoning enthusiasm on a global scale.Embarking on a quest to facilitate inland water monitoring,this paper presents a systematical approach concerning global path planning and path following for heterogeneous USVs.Specifically,by capturing the heterogeneous nature,an extended multiple travelling salesman problem(EMTSP)model,which seamlessly bridges the gap between various disparate constraints and optimization objectives,is formulated for the first time.Then,a novel Greedy Partheno Genetic Algorithm(GPGA)is devised to consistently address the problem from two aspects:(1)Incorporating the greedy randomized initialization and local exploration strategy,GPGA merits strong global and local searching ability,providing high-quality solutions for EMTSP.(2)A novel mutation strategy which not only inherits all advantages of PGA but also maintains the best individual in the offspring is devised,contributing to the local escaping efficiently.Finally,to track the waypoint permutations generated by GPGA,control input is generated by the nonlinear model predictive controller(NMPC),ensuring the USV corresponds with the reference path and smoothen the motion under constrained dynamics.Simulations and comparisons in various scenarios demonstrated the effectiveness and superiority of the proposed scheme. 展开更多
关键词 Path planning unmanned surface vehicles Water monitoring Genetic algorithm
原文传递
Trajectory-tracking control of an unmanned surface vehicle based on characteristic modelling approach:Implementation and field testing
19
作者 Yuhang Meng Hui Ye Xiaofei Yang 《IET Cyber-Systems and Robotics》 EI 2023年第2期15-26,共12页
In this study,a practical adaptive control scheme is proposed for the trajectory tracking of an unmanned surface vehicle via the characteristic modelling approach.Therefore,accurate tracking control can be achieved in... In this study,a practical adaptive control scheme is proposed for the trajectory tracking of an unmanned surface vehicle via the characteristic modelling approach.Therefore,accurate tracking control can be achieved in the presence of unknown time‐varying model parameters and environmental disturbances.The control scheme comprises a trajectory guidance module based on the virtual target approach and a tracking control module designed by characteristic modelling theory.Firstly,the ideal control commands of the yaw speed and surge speed are generated using the position errors between the vehicle and the virtual target.Then,a second‐order characteristic model for the heading and surge speed channel is developed.The parameters of the model are updated by a real‐time parameter identification algorithm.Based on this model,an integrated adaptive control law is designed which consists of golden‐section control,feed‐forward control and integral control.Finally,the development processes of the vehicle platform and the control algorithms are described,and the results of simulation and field experiments are presented and discussed. 展开更多
关键词 adaptive control characteristic model trajectory-tracking unmanned surface vehicle
原文传递
SCIENCE AND TECHNOLOGY
20
《China Today》 2025年第6期71-71,共1页
China Launches“Blue Whale”-World’s First High-speed Uncrewed Submersible.The"Blue Whale,"a cutting-edge high-speed submersible unmanned surface vessel,was launched on April 28 in Zhuhai,south China's ... China Launches“Blue Whale”-World’s First High-speed Uncrewed Submersible.The"Blue Whale,"a cutting-edge high-speed submersible unmanned surface vessel,was launched on April 28 in Zhuhai,south China's Guangdong Province. 展开更多
关键词 unmanned surface vessel unmanned surface vesselwas uncrewed high speed SUBMERSIBLE Blue Whale
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部