期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical study on micro-fracture mechanism of rock dynamic failureinduced by abrupt unloading under high in-situ stresses
1
作者 Yuezong Yang Anye Li +4 位作者 Zhushan Shao Kui Wu Wei Wei Wenhui Du Yujie Wang 《Theoretical & Applied Mechanics Letters》 CSCD 2024年第6期486-495,共10页
Rock burst is a kind of severe engineering disaster resulted from dynamic fracture process of rocks.The macrofailure behaviors of rocks are primarily formed after experiencing the initiation,propagation,and coalescenc... Rock burst is a kind of severe engineering disaster resulted from dynamic fracture process of rocks.The macrofailure behaviors of rocks are primarily formed after experiencing the initiation,propagation,and coalescenceof micro-cracks.In this paper,the grain-based discretized virtual internal bond model is employed to investigatethe fracturing process of unloaded rock under high in-situ stresses from the micro-fracture perspective.Thesimulated micro-fracturing process reveals that the longitudinal stress waves induced by unloading lead to thevisible unloading effect.The influences of in-situ stresses,mineral grain sizes,and grain heterogeneity on rockmacro and micro fracture are investigated.Micro-crack areas of tensile and shear cracks and micro-crack anglesare statistically analyzed to reveal the rock micro-fracture characteristics.The simulated results indicate thatthe combined effect of the stress state transition and the unloading effect dominates the rock unloading failure.The vertical and horizontal in-situ stresses determine the stress state of surrounding rock after unloading andthe unloading effect,respectively.As the vertical stress increases,the stress level after unloading is higher,andthe shear failure characteristics become more obvious.As the horizontal stress increases,the unloading effectincreases,leading to the intensification of tensile failure.The mineral grain size and grain heterogeneity alsohave nonnegligible influences on rock unloading failure.The micro-fracture perspective provides further insightinto the unloading failure mechanism of deep rock excavation. 展开更多
关键词 Rock burst MICRO-FRACTURE Dynamic failure unloading effect
在线阅读 下载PDF
Analytical solution for a circular roadway considering the transient effect of excavation unloading
2
作者 Feng Qiang Jiang Binsong +1 位作者 Wang Gang Hu Chuanpeng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期543-549,共7页
The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The ... The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The computational model of a circular roadway considering the transient effect of excavation unloading is established for these problems.The time factor makes the solution of the problem difficult.Thus,the computational model is divided into a dynamic model and a static model.The Laplace integral transform and inverse transform are performed to solve the dynamic model and elasticity theory is used to analyze the static model.The results from an example show that circumferential stress increases and radial stress decreases with time.The stress difference becomes large gradually in this progress.The displacement increases with unloading time and decreases with the radial depth of surrounding rocks.It can be seen that the development trend of unloading and displacement is similar by comparing their rates.Finally,the results of ANSYS are used to verify the analytical solution.The contrast indicates that the laws of the two methods are basically in agreement.Thus,the analysis can provide a reference for further study. 展开更多
关键词 Excavation unloading Transient effect Circle roadwayAnalytical solution Laplace integral transform Den lseger method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部