The function of Gastrointestinal tract including intestine is to a large degree mechanical.The mechanical properties of the intestinal wall,and the tonic (sustained) and/or phasic(short-
By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities ...By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.展开更多
The static heat loss and unloaded Q_0 are the most important values for both the cryogenic and the RF systems.The BEPCⅡ SRF cavity operates in a liquid helium bath contained in a vacuum insulated,liquid nitrogen cool...The static heat loss and unloaded Q_0 are the most important values for both the cryogenic and the RF systems.The BEPCⅡ SRF cavity operates in a liquid helium bath contained in a vacuum insulated,liquid nitrogen cooled radiation shielded vessel.During the horizontal test at the test station,thermodynamic method is used to measure and calculate the static loss and Q_0 value of the SRF cavity.This paper has briefly introduced the method and process to measure the static loss and Q_0 value of the SRF cavity.The results under different experimental conditions are presented as important data for acceptance test of the SRF cavity.展开更多
The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conduct...The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conducts a uniaxial graded loading creep test on yellow sandstone under different pre-peak unloading and wetting-drying cycles. The improved nonlinear Nishihara model was obtained by introducing a nonlinear viscous element with an accelerated creep threshold switch. The sensitivity characteristics of the parameters of the improved creep model were analyzed and a nonlinear creep constitutive model was established, considering the unloading-cyclic intrinsic damage induced by water intrusion. The research results show that:(1)With an increase in the unloading point, the porosity of the rock samples initially decreases and then increases. As the number of cyclic water intrusions rises, the porosity of the rock samples gradually increases, reaching a maximum of 9.58% at an unloading point of 70% uniaxial compression stress(0.7 Rc) after five cycles.(2) Total creep deformation increases with the number of cyclic water intrusions;however, with an increase in the unloading ratio, the original samples show an initial decrease, followed by an increase in creep deformation. With a higher unloading ratio and various instances of cyclic water intrusion, the total creep time of the rock samples,compared to the original samples, is reduced by 21.8%and 23.02%. The creep damage mode gradually changes from shear damage to tensile damage.(3) The sensitivity characteristics of the improved creep model parameters show that transient elasticity modulus E1 is affected by the coupling of unloading and cyclic water intrusion. The viscoelastic modulus E2 and viscous coefficient η1 are mainly affected by unloading and cyclic water intrusion.(4) Based on the strain equivalence principle of damage mechanics, the damage treatment of the parameters in the original model is improved to construct a nonlinear creep constitutive model that considers unloading-cyclic water intrusion damage. A parameter inversion and comparison to the traditional Nishihara model reveal an average relative standard deviation of 0.271%,significantly less than 1%, indicating a more accurate nonlinear creep constitutive model. The research results are crucial for analyzing the long-term stability of water-related steep rocky slopes post-excavation and unloading and for preventing and controlling creep-type landslide disasters.展开更多
A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states...A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments.展开更多
To study the energy evolution and failure characteristics of saturated sandstone under unloading conditions,rock unloading tests under different stress paths were conducted.The energy evolution mechanism of the unload...To study the energy evolution and failure characteristics of saturated sandstone under unloading conditions,rock unloading tests under different stress paths were conducted.The energy evolution mechanism of the unloading failure of saturated sandstone was systematically explored from the perspectives of the stress path,the initial confining pressure,and the energy conversion rate.The results show that(1)before the peak stress,the elastic energy increases with an increase in deviatoric stress,while the dissipated energy slowly increases first.After the peak stress,the elastic energy decreases with the decrease of deviatoric stress,and the dissipated energy suddenly increases.The energy release intensity during rock failure is positively correlated with the axial stress.(2)When the initial confining pressure is below a certain threshold,the stress path is the main factor influencing the total energy difference.When the axial stress remains constant and the confining pressure is unloading,the total energy is more sensitive to changes in the confining pressure.When the axial stress remains constant,the compressive deformation ability of the rock cannot be significantly improved by the increase in the initial confining pressure.The initial confining pressure is positively correlated with the rock's energy storage limit.(3)The initial confining pressure increases the energy conversion rate of the rock;the initial confining pressure is positively correlated with the energy conversion rate;and the energy conversion rate has a high confining pressure effect.The increase in the axial stress has a much greater impact on the elastic energy than the confining pressure.(4)When the deviatoric stress is small,the confining pressure mainly plays a protective role.Compared with the case of triaxial compression paths,the rock damage is more severe under unloading paths,and compared with the case of constant axial stress,the rock damage is more severe under increasing axial stress.展开更多
Gas rapid unloading(GRU)is an innovative technology for ore comminution.Increasing the production of fine powder in each ore grinding cycle is vital for scaling up the GRU method to industrial applications.This study ...Gas rapid unloading(GRU)is an innovative technology for ore comminution.Increasing the production of fine powder in each ore grinding cycle is vital for scaling up the GRU method to industrial applications.This study utilizes laboratory experiments to demon-strate that moderately reducing the orifice size significantly enhances pulverization and increases fine particle yield.Numerical simulations suggest that smaller orifices improve pulverization by increasing jet speed,reducing pressure drop,and creating a larger pressure difference inside and outside the unloading orifice.The orifice size should be optimized based on feed size to ensure efficient ore discharge.Reducing the unloading orifice size improves GRU grinding efficiency and energy use,offering guidance for the design of ore discharge ports in future industrial-scale equipment.展开更多
Fissured coal mass under triaxial unloading condition exhibits higher burst potential than the triaxial loading condition,which poses challenge to safety and productivity of resources extraction and underground space ...Fissured coal mass under triaxial unloading condition exhibits higher burst potential than the triaxial loading condition,which poses challenge to safety and productivity of resources extraction and underground space utilization.To comprehensively understand the mechanism of unloading-induced burst during excavation process,this study investigated the fracture and energy evolution of samples with different fissure types such as single,two parallel,and two coplanar-parallel using PFC2D modelling.Triaxial loading tests were conducted to determine the compressive strengths and other parameters.With increase of fissure inclination angle,the triaxial compressive strength decreases forβ=0°-30°,and then increase forβ=30°-90°.The strength of samples with two coplanar-parallel fissures is the highest.Fissure can significantly change the distribution of fracture and elastic energy.Secondary cracks were generated starting from both ends of the fissure.Forβ=0°-60°,low elastic strain energy area was produced around the fissure along the loading direction.The elastic strain energy is transferred to the outside of fissures.Forβ=75°-90°,only a small amount of high elastic strain energy was generated on both sides of the fissure.The fracture expansion under unloading conditions occurred due to tensile stress T caused by unloading differential rebound deformation and the shear stress on the fissure surface.展开更多
Background:Scientific animal models are indispensable for studying trauma repair.This work aimed at establishing a more scientific rat trauma model by studying different rat trauma models caused by different trauma nu...Background:Scientific animal models are indispensable for studying trauma repair.This work aimed at establishing a more scientific rat trauma model by studying different rat trauma models caused by different trauma numbers,locations,and trauma attachment tension unloaders and rat age.Methods:A four-trauma self-upper,lower,left and right control model;a two-trauma self-trauma bare and ring control model;and a young and old rat trauma model were created to evaluate the condition of these traumas.Results:In the four-trauma self-control model,the healing status of the upper proximal cephalic trauma was better than that of the lower proximal caudal trauma,whereas there was no significant difference between the left and right trauma.The healing rate and postwound condition of the trauma with a ring control in the two-trauma model were better than those of the bare side.The healing speed of the old rats was slower,and the amount of extracellular matrix in the subcutaneous tissue after healing was significantly lower than that of the young rats.Conclusion:The double trauma with a ring is a more scientific and reasonable experimental model.There is a significant difference between young and old rats in the wound healing process.Therefore,the appropriate age of the rats should be selected according to the main age range of the patients with similar conditions in the clinical setting being mimicked.展开更多
During underground excavation,the surrounding rock mass is subjected to complex cyclic stress,significantly impacting its long-term stability,especially under varying water content conditions where this effect is ampl...During underground excavation,the surrounding rock mass is subjected to complex cyclic stress,significantly impacting its long-term stability,especially under varying water content conditions where this effect is amplified.However,research on the mechanical response mechanisms of surrounding rock mass under such conditions remains inadequate.This study utilized acoustic emission(AE)and resistivity testing to monitor rock fracture changes,revealing the rock’s damage state and characterizing the damage evolution process during uniaxial cyclic loading and unloading.First,a damage variable equation was established based on AE and resistivity parameters,leading to the derivation of a corresponding damage constitutive equation.Uniaxial cyclic loading and unloading tests were then conducted on sandstone samples with varying water contents,continuously monitoring AE signals and resistivity,along with computed tomography scans before and after failure.The predictions from the damage constitutive equation were compared with experimental results.This comparison shows that the proposed damage variable equation effectively characterizes the damage evolution of sandstone during loading and unloading,and that the constitutive equation closely fits the experimental data.This study provides a theoretical basis for monitoring and assessing the responses of surrounding rock mass during underground excavation.展开更多
It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and ...It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces.展开更多
This paper presents a new criterion for determining the unloading points quantitatively and consistently in a multi-stage triaxial test.The radial strain gradient(RSG)is first introduced as an arc tangent function of ...This paper presents a new criterion for determining the unloading points quantitatively and consistently in a multi-stage triaxial test.The radial strain gradient(RSG)is first introduced as an arc tangent function of the rate of change of radial strain to time.RSG is observed to correlate closely with the stress state of a compressed sample,and reaches a horizontal asymptote as approaching failure.For a given rock type,RSG value at peak stress is almost the same,irrespective of the porosity and permeability.These findings lead to the development of RSG criterion:Unloading points can be precisely determined at the time when RSG reaches a pre-determined value that is a little smaller than or equal to the RSG at peak stress.The RSG criterion is validated against other criteria and the single-stage triaxial test on various types of rocks.Failure envelopes from the RSG criterion match well with those from single-stage tests.A practical procedure is recommended to use the RSG criterion:an unconfined compression or single-stage test is first conducted to determine the RSG at peak stress for one sample,the unloading point is then selected to be a value close to the RSG at peak stress,and the multi-stage test is finally performed on another sample using the pre-selected RSG unloading criterion.Generally,the RSG criterion is applicable for any type of rocks,especially brittle rocks,where other criteria are not suitable.Further,it can be practically implemented on the most available rock mechanical testing instruments.展开更多
Existing creep constitutive models rarely incorporate studies on the coupling mechanism between creep damage and rock strain softening/hardening.This study analyzed the strain softening and hardening behaviors of argi...Existing creep constitutive models rarely incorporate studies on the coupling mechanism between creep damage and rock strain softening/hardening.This study analyzed the strain softening and hardening behaviors of argillaceous sandstone and sandy mudstone during load-induced failure based on the plastic increment theory.These behaviors were then coupled with an improved Burgers creep model to establish a coupled creep-damage and plastic softening/hardening model.Finally,the validity and engineering applicability of the proposed model were verified through FLAC~(3D)numerical simulations.The numerical simulation results of standard cylindrical specimens show that the established coupling model can effectively reflect the unloading creep deformation law and failure characteristics of argillaceous sandstone and sandy mudstone.Taking the diversion tunnel of a hydropower station in Northwest China as an example for engineering application,the coupled creep-damage and plastic softening/hardening model is introduced into FLAC~(3D)to carry out numerical simulation calculation of the tunnel under excavation and unsupported creep conditions.The results show that the uncoordinated deformation of the upper and lower walls of the surrounding rock of the tunnel is more prominent.When the buried depth of the tunnel increases to 80 m,the monitoring point C in the sandy mudstone area of the upper wall shows nonlinear accelerated deformation under unsupported creep conditions,and the maximum displacement in the horizontal direction reaches 44.5 mm,and the maximum displacement in the vertical direction reaches 53.5 mm.The coupled creep-damage and plastic softening/hardening model established in the research results can well describe the whole process of uncoordinated deformation and failure in the unloading creep process of soft-hard interbedded rock mass.展开更多
In this study,a uniaxial cyclic compression test is conducted on coal-rock composite structures under two cyclic loads using MTSE45.104 testing apparatus to investigate the macro-mesoscopic deformation,damage behavior...In this study,a uniaxial cyclic compression test is conducted on coal-rock composite structures under two cyclic loads using MTSE45.104 testing apparatus to investigate the macro-mesoscopic deformation,damage behavior,and energy evolution characteristics of these structures under different cyclic stress disturbances.Three loading and unloading rates(LURs)are tested to examine the damage behaviors and energy-driven characteristics of the composites.The findings reveal that the energy-driven behavior,mechanical properties,and macro-micro degradation characteristics of the composites are significantly influenced by the loading rate.Under the gradual cyclic loading and unloading(CLU)path with a constant lower limit(path I)and the CLU path with variable upper and lower boundaries(path II),an increase in LURs from 0.05 to 0.15 mm/min reduces the average loading time by 32.39%and 48.60%,respectively.Consequently,the total number of cracks in the samples increases by 1.66-fold for path I and 1.41-fold for path II.As LURs further increase,the energy storage limit of samples expands,leading to a higher proportion of transmatrix and shear cracks.Under both cyclic loading conditions,a broader cyclic stress range promotes energy dissipation and the formation of internal fractures.Notably,at higher loading rates,cracks tend to propagate along primary weak surfaces,leading to an increased incidence of intermatrix fractures.This behavior indicates a microscopic feature of the failure mechanisms in composite structures.These results provide a theoretical basis for elucidating the damage and failure characteristics of coal-rock composite structures under cyclic stress disturbances.展开更多
During the excavation of large-scale rock slopes and deep hard rock engineering,the induced rapid unloading serves as the primary cause of rock mass deformation and failure.The essence of this phenomenon lies in the o...During the excavation of large-scale rock slopes and deep hard rock engineering,the induced rapid unloading serves as the primary cause of rock mass deformation and failure.The essence of this phenomenon lies in the opening-shear failure process triggered by the normal stress unloading of fractured rock mass.In this study,we focus on local-scale rock fracture and conduct direct shear tests under different normal stress unloading rates on five types of non-persistent fractured hard rocks.The aim is to analyze the influence of normal stress unloading rates on the failure modes and shear mechanical characteristics of non-persistent fractured rocks.The results indicate that the normal unloading displacement decreases gradually with increasing normal stress unloading rate,while the influence of normal stress unloading rate on shear displacement is not significant.As the normal stress unloading rate increases,the rocks brittle failure process accelerates,and the degree of rocks damage decreases.Analysis of the stress state on rock fracture surfaces reveals that increasing the normal stress unloading rate enhances the compressive stress on rocks,leading to a transition in the failure mode from shear failure to tensile failure.A negative exponential strength formula was proposed,which effectively fits the relationship between failure normal stress and normal stress unloading rate.The findings enrich the theoretical foundation of unloading rock mechanics and provide theoretical support for disasters prevention and control in rock engineering excavations.展开更多
Preexisting cracks inside tight sandstones are one of the most important properties for controlling the mechanical and seepage behaviors.During the cyclic loading process,the rock generally exhibits obvious memorabili...Preexisting cracks inside tight sandstones are one of the most important properties for controlling the mechanical and seepage behaviors.During the cyclic loading process,the rock generally exhibits obvious memorability and irreversible plastic deformation,even in the linear elastic stage.The assessment of the evolution of preexisting cracks under hydrostatic pressure loading and unloading processes is helpful in understanding the mechanism of plastic deformation.In this study,ultrasonic measurements were conducted on two tight sandstone specimens with different bedding orientations subjected to hydrostatic loading and unloading processes.The P-wave velocity was characterized by a similar response with the volumetric strain to the hydrostatic pressure and showed different strain sensitivities at different loading and unloading stages.A numerical model based on the discrete element method(DEM)was proposed to quantitatively clarify the evolution of the crack distribution under different hydrostatic pressures.The numerical model was verified by comparing the evolution of the measured P-wave velocities on two anisotropic specimens.The irreversible plastic deformation that occurred during the hydrostatic unloading stage was mainly due to the permanent closure of plastic-controlled cracks.The closure and reopening of cracks with a small aspect ratio account for the major microstructure evolution during the hydrostatic loading and unloading processes.Such evolution of microcracks is highly dependent on the stress path.The anisotropy of the crack distribution plays an important role in the magnitude and strain sensitivity of the P-wave velocity under stress conditions.The study can provide insight into the microstructure evolution during cyclic loading and unloading processes.展开更多
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ...To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.展开更多
BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually....BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually.Metal drug-eluting stent unloading is one of the most common clinical complications.Comparatively,BRS detachment is more concealed and harmful,but has yet to be reported in clinical research.In this study,we report a case of BRS unloading and successful rescue.This is a case of a 59-year-old male with the following medical history:“Type 2 diabetes mellitus”for 2 years,maintained with metformin extended-release tablets,1 g PO BID;“hypertension”for 20 years,with long-term use of metoprolol sustained-release tablets,47.5 mg PO QD;“hyperlipidemia”for 20 years,without regular medication.He was admitted to the emergency department of our hospital due to intermittent chest pain lasting 18 hours,on February 20,2022 at 15:35.Electrocardiogram results showed sinus rhythm,ST-segment elevation in leads I and avL,and poor R-wave progression in leads V1–3.High-sensitivity troponin I level was 4.59 ng/mL,indicating an acute high lateral wall myocardial infarction.The patient’s family requested treatment with BRS,without implanta-tion.During PCI,the BRS became unloaded but was successfully rescued.The patient was followed up for 2 years;he had no episodes of angina pectoris and was in generally good condition.CONCLUSION We describe a case of a 59-year-old male experienced BRS unloading and successful rescue.By analyzing images,the causes of BRS unloading and the treatment plan are discussed to provide insights for BRS release operations.We discuss preventive measures for BRS unloading.展开更多
Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of u...Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of unloading rates.A high-speed photography system and acoustic emission(AE)system were used to monitor the entire process of rockburst process in real-time.The results show that the intensity of gneiss rockburst decreases with decrease of unloading rate,which is manifested as the reduction of AE energy and fragments ejection velocity.The mechanisms are proposed to explain this effect:(i)The reduction of unloading rate changes the crack propagation mechanism in the process of rockburst.This makes the rockbursts change from the tensile failure mechanism at high unloading rate to the tension-shear mixed failure mechanism at low unloading rate,and more energy released in the form of shear crack propagation.Then,less strain energy is converted into kinetic energy of fragments ejection.(ii)Less plate cracking degree of gneiss has taken shape due to decrease of unloading rate,resulting in the destruction of rockburst incubation process.The enlightenments of reducing the unloading rate for the project are also described quantitatively.The rockburst magnitude is reduced from the medium magnitude at the unloading rate of 0.1 MPa/s to the slight magnitude at the unloading rate of 0.025 MPa/s,which was judged by the ejection velocity.展开更多
With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure...With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure(CUCP)test cannot simulate the plastic yielding and instantaneous unloading process of supporting structure to rock.Thus,a high stress loading-instantaneous unloading confining pressure(HSL-IUCP)test method was proposed and applied by considering bolt’s fracture under stress.The wall thickness of confining pressure plates and the material of bolts were changed to realize different confin-ing pressure loading stiffness(CPLS)and lateral maximum allowable deformation(LMAD).The superio-rity of HSL-ICPU method is verified compared with CUCP.The rock failure mechanism caused by sudden failure of supporting structure is obtained.The results show that when CPLS increases from 1.35 to 2.33 GN/m,rock’s peak strength and elastic modulus increase by 25.18%and 23.70%,respectively.The fracture characteristics change from tensile failure to tensile-shear mixed failure.When LMAD decreases from 0.40 to 0.16 mm,rock’s residual strength,peak strain,and residual strain decrease by 91.80%,16.94%,and 21.92%,respectively,and post-peak drop modulus increases by 140.47%.The test results obtained by this method are closer to rock’s real mechanical response characteristics compared with CUCP.展开更多
文摘The function of Gastrointestinal tract including intestine is to a large degree mechanical.The mechanical properties of the intestinal wall,and the tonic (sustained) and/or phasic(short-
文摘By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.
文摘The static heat loss and unloaded Q_0 are the most important values for both the cryogenic and the RF systems.The BEPCⅡ SRF cavity operates in a liquid helium bath contained in a vacuum insulated,liquid nitrogen cooled radiation shielded vessel.During the horizontal test at the test station,thermodynamic method is used to measure and calculate the static loss and Q_0 value of the SRF cavity.This paper has briefly introduced the method and process to measure the static loss and Q_0 value of the SRF cavity.The results under different experimental conditions are presented as important data for acceptance test of the SRF cavity.
基金We gratefully acknowledge the financial support from the Key Laboratory of Geological Safety of Coastal Urban Underground Space,Ministry of Natural Resources(BHKF2022Y03)Shandong Provincial Colleges and Universities Youth Innovation Technology Support Program,Education Department of Shandong Province(grant number 2023KJ092).
文摘The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conducts a uniaxial graded loading creep test on yellow sandstone under different pre-peak unloading and wetting-drying cycles. The improved nonlinear Nishihara model was obtained by introducing a nonlinear viscous element with an accelerated creep threshold switch. The sensitivity characteristics of the parameters of the improved creep model were analyzed and a nonlinear creep constitutive model was established, considering the unloading-cyclic intrinsic damage induced by water intrusion. The research results show that:(1)With an increase in the unloading point, the porosity of the rock samples initially decreases and then increases. As the number of cyclic water intrusions rises, the porosity of the rock samples gradually increases, reaching a maximum of 9.58% at an unloading point of 70% uniaxial compression stress(0.7 Rc) after five cycles.(2) Total creep deformation increases with the number of cyclic water intrusions;however, with an increase in the unloading ratio, the original samples show an initial decrease, followed by an increase in creep deformation. With a higher unloading ratio and various instances of cyclic water intrusion, the total creep time of the rock samples,compared to the original samples, is reduced by 21.8%and 23.02%. The creep damage mode gradually changes from shear damage to tensile damage.(3) The sensitivity characteristics of the improved creep model parameters show that transient elasticity modulus E1 is affected by the coupling of unloading and cyclic water intrusion. The viscoelastic modulus E2 and viscous coefficient η1 are mainly affected by unloading and cyclic water intrusion.(4) Based on the strain equivalence principle of damage mechanics, the damage treatment of the parameters in the original model is improved to construct a nonlinear creep constitutive model that considers unloading-cyclic water intrusion damage. A parameter inversion and comparison to the traditional Nishihara model reveal an average relative standard deviation of 0.271%,significantly less than 1%, indicating a more accurate nonlinear creep constitutive model. The research results are crucial for analyzing the long-term stability of water-related steep rocky slopes post-excavation and unloading and for preventing and controlling creep-type landslide disasters.
基金supports from the National Natural Science Foundation of China (Grant Nos.52004143 and 52374095)the open fund for the Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Grant No.SKLMRDPC21KF06).
文摘A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments.
基金Anhui Natural Science Foundation Youth Program,Grant/Award Number:2208085QE142National Natural Science Foundations of China,Grant/Award Numbers:52004003,52304073Opening Foundation of Anhui Province Key Laboratory of Building Structure and Underground Engineering,Grant/Award Number:KLBSUE-2022-04。
文摘To study the energy evolution and failure characteristics of saturated sandstone under unloading conditions,rock unloading tests under different stress paths were conducted.The energy evolution mechanism of the unloading failure of saturated sandstone was systematically explored from the perspectives of the stress path,the initial confining pressure,and the energy conversion rate.The results show that(1)before the peak stress,the elastic energy increases with an increase in deviatoric stress,while the dissipated energy slowly increases first.After the peak stress,the elastic energy decreases with the decrease of deviatoric stress,and the dissipated energy suddenly increases.The energy release intensity during rock failure is positively correlated with the axial stress.(2)When the initial confining pressure is below a certain threshold,the stress path is the main factor influencing the total energy difference.When the axial stress remains constant and the confining pressure is unloading,the total energy is more sensitive to changes in the confining pressure.When the axial stress remains constant,the compressive deformation ability of the rock cannot be significantly improved by the increase in the initial confining pressure.The initial confining pressure is positively correlated with the rock's energy storage limit.(3)The initial confining pressure increases the energy conversion rate of the rock;the initial confining pressure is positively correlated with the energy conversion rate;and the energy conversion rate has a high confining pressure effect.The increase in the axial stress has a much greater impact on the elastic energy than the confining pressure.(4)When the deviatoric stress is small,the confining pressure mainly plays a protective role.Compared with the case of triaxial compression paths,the rock damage is more severe under unloading paths,and compared with the case of constant axial stress,the rock damage is more severe under increasing axial stress.
基金financially supported by the National Natural Science Foundation of China(No.51934001)。
文摘Gas rapid unloading(GRU)is an innovative technology for ore comminution.Increasing the production of fine powder in each ore grinding cycle is vital for scaling up the GRU method to industrial applications.This study utilizes laboratory experiments to demon-strate that moderately reducing the orifice size significantly enhances pulverization and increases fine particle yield.Numerical simulations suggest that smaller orifices improve pulverization by increasing jet speed,reducing pressure drop,and creating a larger pressure difference inside and outside the unloading orifice.The orifice size should be optimized based on feed size to ensure efficient ore discharge.Reducing the unloading orifice size improves GRU grinding efficiency and energy use,offering guidance for the design of ore discharge ports in future industrial-scale equipment.
基金supported by the National Science and Technology Major Project(2024ZD1000705)the Basic Research Project of Liaoning Provincial Department of Education-Key Project of Independent Topic Selection(LJ212410147007).
文摘Fissured coal mass under triaxial unloading condition exhibits higher burst potential than the triaxial loading condition,which poses challenge to safety and productivity of resources extraction and underground space utilization.To comprehensively understand the mechanism of unloading-induced burst during excavation process,this study investigated the fracture and energy evolution of samples with different fissure types such as single,two parallel,and two coplanar-parallel using PFC2D modelling.Triaxial loading tests were conducted to determine the compressive strengths and other parameters.With increase of fissure inclination angle,the triaxial compressive strength decreases forβ=0°-30°,and then increase forβ=30°-90°.The strength of samples with two coplanar-parallel fissures is the highest.Fissure can significantly change the distribution of fracture and elastic energy.Secondary cracks were generated starting from both ends of the fissure.Forβ=0°-60°,low elastic strain energy area was produced around the fissure along the loading direction.The elastic strain energy is transferred to the outside of fissures.Forβ=75°-90°,only a small amount of high elastic strain energy was generated on both sides of the fissure.The fracture expansion under unloading conditions occurred due to tensile stress T caused by unloading differential rebound deformation and the shear stress on the fissure surface.
基金Shandong Provincial Natural Science Foundation,Grant/Award Number:ZR2022MH211the Key Program of Shandong Provincial Natural Science Foundation,Grant/Award Number:ZR2020KE018National Natural Science Foundation of China,Grant/Award Number:52003068。
文摘Background:Scientific animal models are indispensable for studying trauma repair.This work aimed at establishing a more scientific rat trauma model by studying different rat trauma models caused by different trauma numbers,locations,and trauma attachment tension unloaders and rat age.Methods:A four-trauma self-upper,lower,left and right control model;a two-trauma self-trauma bare and ring control model;and a young and old rat trauma model were created to evaluate the condition of these traumas.Results:In the four-trauma self-control model,the healing status of the upper proximal cephalic trauma was better than that of the lower proximal caudal trauma,whereas there was no significant difference between the left and right trauma.The healing rate and postwound condition of the trauma with a ring control in the two-trauma model were better than those of the bare side.The healing speed of the old rats was slower,and the amount of extracellular matrix in the subcutaneous tissue after healing was significantly lower than that of the young rats.Conclusion:The double trauma with a ring is a more scientific and reasonable experimental model.There is a significant difference between young and old rats in the wound healing process.Therefore,the appropriate age of the rats should be selected according to the main age range of the patients with similar conditions in the clinical setting being mimicked.
基金Projects(52279117,52325905)supported by the National Natural Science Foundation of ChinaProject(DJ-HXGG-2023-16)supported by the Technology Project of PowerChinaProject(SKLGME-JBGS2401)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,China。
文摘During underground excavation,the surrounding rock mass is subjected to complex cyclic stress,significantly impacting its long-term stability,especially under varying water content conditions where this effect is amplified.However,research on the mechanical response mechanisms of surrounding rock mass under such conditions remains inadequate.This study utilized acoustic emission(AE)and resistivity testing to monitor rock fracture changes,revealing the rock’s damage state and characterizing the damage evolution process during uniaxial cyclic loading and unloading.First,a damage variable equation was established based on AE and resistivity parameters,leading to the derivation of a corresponding damage constitutive equation.Uniaxial cyclic loading and unloading tests were then conducted on sandstone samples with varying water contents,continuously monitoring AE signals and resistivity,along with computed tomography scans before and after failure.The predictions from the damage constitutive equation were compared with experimental results.This comparison shows that the proposed damage variable equation effectively characterizes the damage evolution of sandstone during loading and unloading,and that the constitutive equation closely fits the experimental data.This study provides a theoretical basis for monitoring and assessing the responses of surrounding rock mass during underground excavation.
基金financially supported by National Natural Science Foundation of China(No.52304136)Young Talent of Lifting Engineering for Science and Technology in Shandong,China(No.SDAST2024QTA060)Key Project of Research and Development in Liaocheng(No.2023YD02)。
文摘It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces.
文摘This paper presents a new criterion for determining the unloading points quantitatively and consistently in a multi-stage triaxial test.The radial strain gradient(RSG)is first introduced as an arc tangent function of the rate of change of radial strain to time.RSG is observed to correlate closely with the stress state of a compressed sample,and reaches a horizontal asymptote as approaching failure.For a given rock type,RSG value at peak stress is almost the same,irrespective of the porosity and permeability.These findings lead to the development of RSG criterion:Unloading points can be precisely determined at the time when RSG reaches a pre-determined value that is a little smaller than or equal to the RSG at peak stress.The RSG criterion is validated against other criteria and the single-stage triaxial test on various types of rocks.Failure envelopes from the RSG criterion match well with those from single-stage tests.A practical procedure is recommended to use the RSG criterion:an unconfined compression or single-stage test is first conducted to determine the RSG at peak stress for one sample,the unloading point is then selected to be a value close to the RSG at peak stress,and the multi-stage test is finally performed on another sample using the pre-selected RSG unloading criterion.Generally,the RSG criterion is applicable for any type of rocks,especially brittle rocks,where other criteria are not suitable.Further,it can be practically implemented on the most available rock mechanical testing instruments.
基金funded by the Natural Science Foundation of China(Grant No.U22A20600)。
文摘Existing creep constitutive models rarely incorporate studies on the coupling mechanism between creep damage and rock strain softening/hardening.This study analyzed the strain softening and hardening behaviors of argillaceous sandstone and sandy mudstone during load-induced failure based on the plastic increment theory.These behaviors were then coupled with an improved Burgers creep model to establish a coupled creep-damage and plastic softening/hardening model.Finally,the validity and engineering applicability of the proposed model were verified through FLAC~(3D)numerical simulations.The numerical simulation results of standard cylindrical specimens show that the established coupling model can effectively reflect the unloading creep deformation law and failure characteristics of argillaceous sandstone and sandy mudstone.Taking the diversion tunnel of a hydropower station in Northwest China as an example for engineering application,the coupled creep-damage and plastic softening/hardening model is introduced into FLAC~(3D)to carry out numerical simulation calculation of the tunnel under excavation and unsupported creep conditions.The results show that the uncoordinated deformation of the upper and lower walls of the surrounding rock of the tunnel is more prominent.When the buried depth of the tunnel increases to 80 m,the monitoring point C in the sandy mudstone area of the upper wall shows nonlinear accelerated deformation under unsupported creep conditions,and the maximum displacement in the horizontal direction reaches 44.5 mm,and the maximum displacement in the vertical direction reaches 53.5 mm.The coupled creep-damage and plastic softening/hardening model established in the research results can well describe the whole process of uncoordinated deformation and failure in the unloading creep process of soft-hard interbedded rock mass.
基金Project(2023YFC3009003) supported by the National Key R&D Program of ChinaProjects(52130409, 52121003, 52374249, 52204220) supported by the National Natural Science Foundation of ChinaProject(2024JCCXAQ01) supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this study,a uniaxial cyclic compression test is conducted on coal-rock composite structures under two cyclic loads using MTSE45.104 testing apparatus to investigate the macro-mesoscopic deformation,damage behavior,and energy evolution characteristics of these structures under different cyclic stress disturbances.Three loading and unloading rates(LURs)are tested to examine the damage behaviors and energy-driven characteristics of the composites.The findings reveal that the energy-driven behavior,mechanical properties,and macro-micro degradation characteristics of the composites are significantly influenced by the loading rate.Under the gradual cyclic loading and unloading(CLU)path with a constant lower limit(path I)and the CLU path with variable upper and lower boundaries(path II),an increase in LURs from 0.05 to 0.15 mm/min reduces the average loading time by 32.39%and 48.60%,respectively.Consequently,the total number of cracks in the samples increases by 1.66-fold for path I and 1.41-fold for path II.As LURs further increase,the energy storage limit of samples expands,leading to a higher proportion of transmatrix and shear cracks.Under both cyclic loading conditions,a broader cyclic stress range promotes energy dissipation and the formation of internal fractures.Notably,at higher loading rates,cracks tend to propagate along primary weak surfaces,leading to an increased incidence of intermatrix fractures.This behavior indicates a microscopic feature of the failure mechanisms in composite structures.These results provide a theoretical basis for elucidating the damage and failure characteristics of coal-rock composite structures under cyclic stress disturbances.
基金supported by the National Natural Science Foundation of China(Grant Nos.42372326 and 42090054)supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(SKLGP2023Z015).
文摘During the excavation of large-scale rock slopes and deep hard rock engineering,the induced rapid unloading serves as the primary cause of rock mass deformation and failure.The essence of this phenomenon lies in the opening-shear failure process triggered by the normal stress unloading of fractured rock mass.In this study,we focus on local-scale rock fracture and conduct direct shear tests under different normal stress unloading rates on five types of non-persistent fractured hard rocks.The aim is to analyze the influence of normal stress unloading rates on the failure modes and shear mechanical characteristics of non-persistent fractured rocks.The results indicate that the normal unloading displacement decreases gradually with increasing normal stress unloading rate,while the influence of normal stress unloading rate on shear displacement is not significant.As the normal stress unloading rate increases,the rocks brittle failure process accelerates,and the degree of rocks damage decreases.Analysis of the stress state on rock fracture surfaces reveals that increasing the normal stress unloading rate enhances the compressive stress on rocks,leading to a transition in the failure mode from shear failure to tensile failure.A negative exponential strength formula was proposed,which effectively fits the relationship between failure normal stress and normal stress unloading rate.The findings enrich the theoretical foundation of unloading rock mechanics and provide theoretical support for disasters prevention and control in rock engineering excavations.
基金supported by the National Natural Science Foundation of China(Grant No.U2244215)the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022010801010159)the Major Project of Inner Mongolia Science and Technology(Grant No.2021ZD0034).
文摘Preexisting cracks inside tight sandstones are one of the most important properties for controlling the mechanical and seepage behaviors.During the cyclic loading process,the rock generally exhibits obvious memorability and irreversible plastic deformation,even in the linear elastic stage.The assessment of the evolution of preexisting cracks under hydrostatic pressure loading and unloading processes is helpful in understanding the mechanism of plastic deformation.In this study,ultrasonic measurements were conducted on two tight sandstone specimens with different bedding orientations subjected to hydrostatic loading and unloading processes.The P-wave velocity was characterized by a similar response with the volumetric strain to the hydrostatic pressure and showed different strain sensitivities at different loading and unloading stages.A numerical model based on the discrete element method(DEM)was proposed to quantitatively clarify the evolution of the crack distribution under different hydrostatic pressures.The numerical model was verified by comparing the evolution of the measured P-wave velocities on two anisotropic specimens.The irreversible plastic deformation that occurred during the hydrostatic unloading stage was mainly due to the permanent closure of plastic-controlled cracks.The closure and reopening of cracks with a small aspect ratio account for the major microstructure evolution during the hydrostatic loading and unloading processes.Such evolution of microcracks is highly dependent on the stress path.The anisotropy of the crack distribution plays an important role in the magnitude and strain sensitivity of the P-wave velocity under stress conditions.The study can provide insight into the microstructure evolution during cyclic loading and unloading processes.
基金the financial support from the National Natural Science Foundation of China(Grant No.51839003)Liaoning Revitalization Talents Program(Grant No.XLYCYSZX 1902)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2023zy002).
文摘To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.
基金Supported by Health Commission of Hunan Province,No.202203014389Chinese Medicine Research Project of Hunan Province,No.A2023051the Natural Science Foundation of Hunan Province,No.2024JJ9414.
文摘BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually.Metal drug-eluting stent unloading is one of the most common clinical complications.Comparatively,BRS detachment is more concealed and harmful,but has yet to be reported in clinical research.In this study,we report a case of BRS unloading and successful rescue.This is a case of a 59-year-old male with the following medical history:“Type 2 diabetes mellitus”for 2 years,maintained with metformin extended-release tablets,1 g PO BID;“hypertension”for 20 years,with long-term use of metoprolol sustained-release tablets,47.5 mg PO QD;“hyperlipidemia”for 20 years,without regular medication.He was admitted to the emergency department of our hospital due to intermittent chest pain lasting 18 hours,on February 20,2022 at 15:35.Electrocardiogram results showed sinus rhythm,ST-segment elevation in leads I and avL,and poor R-wave progression in leads V1–3.High-sensitivity troponin I level was 4.59 ng/mL,indicating an acute high lateral wall myocardial infarction.The patient’s family requested treatment with BRS,without implanta-tion.During PCI,the BRS became unloaded but was successfully rescued.The patient was followed up for 2 years;he had no episodes of angina pectoris and was in generally good condition.CONCLUSION We describe a case of a 59-year-old male experienced BRS unloading and successful rescue.By analyzing images,the causes of BRS unloading and the treatment plan are discussed to provide insights for BRS release operations.We discuss preventive measures for BRS unloading.
基金The financial support from the National Natural Science Foundation of China(Grant Nos.41941018 and 52074299)the Fundamental Research Funds for the Central Universities of China(Grant No.2023JCCXSB02)。
文摘Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of unloading rates.A high-speed photography system and acoustic emission(AE)system were used to monitor the entire process of rockburst process in real-time.The results show that the intensity of gneiss rockburst decreases with decrease of unloading rate,which is manifested as the reduction of AE energy and fragments ejection velocity.The mechanisms are proposed to explain this effect:(i)The reduction of unloading rate changes the crack propagation mechanism in the process of rockburst.This makes the rockbursts change from the tensile failure mechanism at high unloading rate to the tension-shear mixed failure mechanism at low unloading rate,and more energy released in the form of shear crack propagation.Then,less strain energy is converted into kinetic energy of fragments ejection.(ii)Less plate cracking degree of gneiss has taken shape due to decrease of unloading rate,resulting in the destruction of rockburst incubation process.The enlightenments of reducing the unloading rate for the project are also described quantitatively.The rockburst magnitude is reduced from the medium magnitude at the unloading rate of 0.1 MPa/s to the slight magnitude at the unloading rate of 0.025 MPa/s,which was judged by the ejection velocity.
基金the National Natural Science Foundation of China(Nos.52374218,52174122 and 52374094)Outstanding Youth Fund of Shandong Natural Science Foundation(No.ZR2022YQ49)Taishan Scholar Project in Shandong Province(Nos.tspd20210313 and tsqn202211150).
文摘With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure(CUCP)test cannot simulate the plastic yielding and instantaneous unloading process of supporting structure to rock.Thus,a high stress loading-instantaneous unloading confining pressure(HSL-IUCP)test method was proposed and applied by considering bolt’s fracture under stress.The wall thickness of confining pressure plates and the material of bolts were changed to realize different confin-ing pressure loading stiffness(CPLS)and lateral maximum allowable deformation(LMAD).The superio-rity of HSL-ICPU method is verified compared with CUCP.The rock failure mechanism caused by sudden failure of supporting structure is obtained.The results show that when CPLS increases from 1.35 to 2.33 GN/m,rock’s peak strength and elastic modulus increase by 25.18%and 23.70%,respectively.The fracture characteristics change from tensile failure to tensile-shear mixed failure.When LMAD decreases from 0.40 to 0.16 mm,rock’s residual strength,peak strain,and residual strain decrease by 91.80%,16.94%,and 21.92%,respectively,and post-peak drop modulus increases by 140.47%.The test results obtained by this method are closer to rock’s real mechanical response characteristics compared with CUCP.