In this paper, the problem of pre-specified performance fault-tolerant cluster consensus control and fault direction identification is solved for the human-in-the-loop(HIL) swarm unmanned aerial vehicles(UAVs) in the ...In this paper, the problem of pre-specified performance fault-tolerant cluster consensus control and fault direction identification is solved for the human-in-the-loop(HIL) swarm unmanned aerial vehicles(UAVs) in the presence of possible nonidentical and unknown direction faults(NUDFs) in the yaw channel.The control strategy begins with the design of a pre-specified performance event-triggered observer for each individual UAV.These observers estimate the outputs of the human controlled UAVs, and simultaneously achieve the distributed design of actual control signals as well as cluster consensus of the observer output.It is worth mentioning that these observers require neither the high-order derivatives of the human controlled UAVs' output nor a priori knowledge of the initial conditions. The fault-tolerant controller realizes the pre-specified performance output regulation through error transformation and the Nussbaum function. It should be pointed out that there are no chattering caused by the jump of the Nussbaum function when a reverse fault occurs. In addition, to provide a basis for further solving the problem of physical malfunctions, a fault direction identification algorithm is proposed to accurately identify whether a reverse fault has occurred. Simulation results verify the effectiveness of the proposed control and fault direction identification strategies when the reverse faults occur.展开更多
Hydraulic piston pumps are commonly used in aircraft. In order to improve the viability of aircraft and energy efficiency, intelligent variable pressure pump systems have been used in aircraft hydraulic systems more a...Hydraulic piston pumps are commonly used in aircraft. In order to improve the viability of aircraft and energy efficiency, intelligent variable pressure pump systems have been used in aircraft hydraulic systems more and more widely. Efficient fault diagnosis plays an important role in improving the reliability and performance of hydraulic systems. In this paper, a fault diagnosis method of an intelligent hydraulic pump system(IHPS) based on a nonlinear unknown input observer(NUIO) is proposed. Different from factors of a full-order Luenberger-type unknown input observer, nonlinear factors of the IHPS are considered in the NUIO. Firstly, a new type of intelligent pump is presented, the mathematical model of which is established to describe the IHPS. Taking into account the real-time requirements of the IHPS and the special structure of the pump, the mechanism of the intelligent pump and failure modes are analyzed and two typical failure modes are obtained. Furthermore, a NUIO of the IHPS is performed based on the output pressure and swashplate angle signals. With the residual error signals produced by the NUIO, online intelligent pump failure occurring in real-time can be detected. Lastly, through analysis and simulation, it is confirmed that this diagnostic method could accurately diagnose and isolate those typical failure modes of the nonlinear IHPS. The method proposed in this paper is of great significance in improving the reliability of the IHPS.展开更多
By building mathematical model for HAGC (hydraulic automation gauge control) system of strip rolling mill, treating faults as unknown inputs induced by model uncertainty, and analyzing fault direction, an unknown in...By building mathematical model for HAGC (hydraulic automation gauge control) system of strip rolling mill, treating faults as unknown inputs induced by model uncertainty, and analyzing fault direction, an unknown input fault diagnosis observer group was designed. Fault detection and isolation were realized through making ob- server residuals robust to specific faults but sensitive to other faults. Sufficient existence conditions and design of the observers were given in detail. Diagnosis observer parameters for servo-valve, cylinder, roller and body rolling mill were obtained resoectively. The effectiveness of this diagnosis method was oroved bv actual data simulations.展开更多
A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model...A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model (AMM) and unknown input observer (UIO). The main idea of the proposed scheme stems from the fact that the actuator Lock-in-Place fault is unknown (when and where the actuator gets locked are unknown), and multiple models are used to describe different fault scenarios, then a bank of unknown input observers are designed to implement the disturbance de-coupling. According to Lyapunov theory, proof of the robustness of the newly developed scheme in the presence of faults and disturbances is derived. Numerical simulation results on an aircraft example show satisfactory performance of the proposed algorithm.展开更多
This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm ar...This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm arising from the disturbance from orbit control force. The effects of orbit control force on the fault diagnosis system for satellite attitude control systems, including the disturbing torque caused by the misalignments and the model uncertainty caused by the fuel consumed, are discussed, where standard Lu- enberger observer cannot work well. Then the nonlinear unknown input observer is proposed to decouple faults from disturbance, Besides, a linear matrix inequality approach is adopted to reduce the effect of nonlinear part and model uncertainties on the observer. The numerical and semi-physical simulation demonstrates the effectiveness of the proposed observer for the fault diagnosis system of the satellite during orbit maneuver.展开更多
The inherent nonlinearities of the rudder servo system(RSS) and the unknown external disturbances bring great challenges to the practical application of fault detection technology. Modeling of whole rudder system is a...The inherent nonlinearities of the rudder servo system(RSS) and the unknown external disturbances bring great challenges to the practical application of fault detection technology. Modeling of whole rudder system is a challenging and difficult task. Quite often, models are too inaccurate, especially in transient stages. In model based fault detection, these inaccuracies might cause wrong actions. An effective approach, which combines nonlinear unknown input observer(NUIO) with an adaptive threshold, is proposed. NUIO can estimate the states of RSS asymptotically without any knowledge of external disturbance. An adaptive threshold is used for decision making which helps to reduce the influence of model uncertainty. Actuator and sensor faults that occur in RSS are considered both by simulation and experimental tests. The observer performance, robustness and fault detection capability are verified. Simulation and experimental results show that the proposed fault detection scheme is efficient and can be used for on-line fault detection.展开更多
This work introduces an observer structure and highlights its distinct advantages in fault detection and isolation. Its application to the issue of shorted turns detection in synchronous generators is demonstrated. Fo...This work introduces an observer structure and highlights its distinct advantages in fault detection and isolation. Its application to the issue of shorted turns detection in synchronous generators is demonstrated. For the theoretical foundation, the convergence and design of Luenberger-type observers for disturbed linear time-invariant (LTI) single-input single-output (SISO) systems are reviewed with a particular focus on input and output disturbances. As an additional result, a simple observer design for stationary output disturbances that avoids a system order extension, as in classical results, is proposed.展开更多
基金supported in part by the National Natural Science Foundation of China(62173028,62233015,62173024)the Guangdong Basic and Applied Basic Research Foundation(2024A1515011493)+3 种基金the Science,Technology&Innovation Project of Xiongan New Area(2023XAGG0062)Beijing Natural Science Foundation(4232060)the International Scientists Project,Beijing Natural Science Foundation(IS23065)the Brazilian Research Council(303289/2022-8)
文摘In this paper, the problem of pre-specified performance fault-tolerant cluster consensus control and fault direction identification is solved for the human-in-the-loop(HIL) swarm unmanned aerial vehicles(UAVs) in the presence of possible nonidentical and unknown direction faults(NUDFs) in the yaw channel.The control strategy begins with the design of a pre-specified performance event-triggered observer for each individual UAV.These observers estimate the outputs of the human controlled UAVs, and simultaneously achieve the distributed design of actual control signals as well as cluster consensus of the observer output.It is worth mentioning that these observers require neither the high-order derivatives of the human controlled UAVs' output nor a priori knowledge of the initial conditions. The fault-tolerant controller realizes the pre-specified performance output regulation through error transformation and the Nussbaum function. It should be pointed out that there are no chattering caused by the jump of the Nussbaum function when a reverse fault occurs. In addition, to provide a basis for further solving the problem of physical malfunctions, a fault direction identification algorithm is proposed to accurately identify whether a reverse fault has occurred. Simulation results verify the effectiveness of the proposed control and fault direction identification strategies when the reverse faults occur.
基金co-supported by the National Natural Science Foundation of China (Nos. 51620105010, 51575019 and 51675019)National Basic Research Program of China (No. 2014CB046400)111 Program of China
文摘Hydraulic piston pumps are commonly used in aircraft. In order to improve the viability of aircraft and energy efficiency, intelligent variable pressure pump systems have been used in aircraft hydraulic systems more and more widely. Efficient fault diagnosis plays an important role in improving the reliability and performance of hydraulic systems. In this paper, a fault diagnosis method of an intelligent hydraulic pump system(IHPS) based on a nonlinear unknown input observer(NUIO) is proposed. Different from factors of a full-order Luenberger-type unknown input observer, nonlinear factors of the IHPS are considered in the NUIO. Firstly, a new type of intelligent pump is presented, the mathematical model of which is established to describe the IHPS. Taking into account the real-time requirements of the IHPS and the special structure of the pump, the mechanism of the intelligent pump and failure modes are analyzed and two typical failure modes are obtained. Furthermore, a NUIO of the IHPS is performed based on the output pressure and swashplate angle signals. With the residual error signals produced by the NUIO, online intelligent pump failure occurring in real-time can be detected. Lastly, through analysis and simulation, it is confirmed that this diagnostic method could accurately diagnose and isolate those typical failure modes of the nonlinear IHPS. The method proposed in this paper is of great significance in improving the reliability of the IHPS.
文摘By building mathematical model for HAGC (hydraulic automation gauge control) system of strip rolling mill, treating faults as unknown inputs induced by model uncertainty, and analyzing fault direction, an unknown input fault diagnosis observer group was designed. Fault detection and isolation were realized through making ob- server residuals robust to specific faults but sensitive to other faults. Sufficient existence conditions and design of the observers were given in detail. Diagnosis observer parameters for servo-valve, cylinder, roller and body rolling mill were obtained resoectively. The effectiveness of this diagnosis method was oroved bv actual data simulations.
基金the National Natural Science Foundation of China (60574083)Aeronautics Science Foun-dation of China (2007ZC52039)
文摘A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model (AMM) and unknown input observer (UIO). The main idea of the proposed scheme stems from the fact that the actuator Lock-in-Place fault is unknown (when and where the actuator gets locked are unknown), and multiple models are used to describe different fault scenarios, then a bank of unknown input observers are designed to implement the disturbance de-coupling. According to Lyapunov theory, proof of the robustness of the newly developed scheme in the presence of faults and disturbances is derived. Numerical simulation results on an aircraft example show satisfactory performance of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (61034005)the Natural Science Foundation of Jiangsu Province (BK2010072)
文摘This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm arising from the disturbance from orbit control force. The effects of orbit control force on the fault diagnosis system for satellite attitude control systems, including the disturbing torque caused by the misalignments and the model uncertainty caused by the fuel consumed, are discussed, where standard Lu- enberger observer cannot work well. Then the nonlinear unknown input observer is proposed to decouple faults from disturbance, Besides, a linear matrix inequality approach is adopted to reduce the effect of nonlinear part and model uncertainties on the observer. The numerical and semi-physical simulation demonstrates the effectiveness of the proposed observer for the fault diagnosis system of the satellite during orbit maneuver.
基金Project(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject(51175453)supported by the National Natural Science Foundation of China
文摘The inherent nonlinearities of the rudder servo system(RSS) and the unknown external disturbances bring great challenges to the practical application of fault detection technology. Modeling of whole rudder system is a challenging and difficult task. Quite often, models are too inaccurate, especially in transient stages. In model based fault detection, these inaccuracies might cause wrong actions. An effective approach, which combines nonlinear unknown input observer(NUIO) with an adaptive threshold, is proposed. NUIO can estimate the states of RSS asymptotically without any knowledge of external disturbance. An adaptive threshold is used for decision making which helps to reduce the influence of model uncertainty. Actuator and sensor faults that occur in RSS are considered both by simulation and experimental tests. The observer performance, robustness and fault detection capability are verified. Simulation and experimental results show that the proposed fault detection scheme is efficient and can be used for on-line fault detection.
文摘This work introduces an observer structure and highlights its distinct advantages in fault detection and isolation. Its application to the issue of shorted turns detection in synchronous generators is demonstrated. For the theoretical foundation, the convergence and design of Luenberger-type observers for disturbed linear time-invariant (LTI) single-input single-output (SISO) systems are reviewed with a particular focus on input and output disturbances. As an additional result, a simple observer design for stationary output disturbances that avoids a system order extension, as in classical results, is proposed.