Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta...Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.展开更多
This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separati...This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method.展开更多
In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unk...In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unknown nonlinearities and uncertainties,it is challenging to design a controller that can ensure the stability of closed-loop system within a predetermined finite time while maintaining the specified transient performance.The underlying problem becomes further complex as the control directions are unknown.To deal with the above problems,a special translation function as well as Nussbaum type function are introduced in the prescribed performance control(PPC)framework.Finally,a PPC as well as preset finite time tracking control scheme is designed,and its effectiveness is confirmed by both theoretical analysis and numerical simulation.展开更多
The adaptive stabilization problem of nonlinear systems are studied. For a class of uncertain nonlinear systems with unknown control direction, we proposed a robust adaptive backstepping scheme withσ-modification by ...The adaptive stabilization problem of nonlinear systems are studied. For a class of uncertain nonlinear systems with unknown control direction, we proposed a robust adaptive backstepping scheme withσ-modification by introducing Nussbaum function and Backstep- ping methods, and proved that all the signals of the closed-loop systems are bounded.展开更多
In the article,the issues of asymptotic adaptive tracking control for the uncertain nonlinear systems in the presence of actuator faults and unknown control directions are investigated.By using the properties of the N...In the article,the issues of asymptotic adaptive tracking control for the uncertain nonlinear systems in the presence of actuator faults and unknown control directions are investigated.By using the properties of the Nussbaum function and backstepping technique,the problems resulting from the unknown signs of the nonlinear control functions are circumvented successfully.Moreover,a new adaptive asymptotic tracking control method is presented with the fault-tolerant control framework,which is capable of realising zero-tracking performance.The stability of the controlled system is ensured through fractional Lyapunov stability analysis.Finally,the validity of the raised scheme is verified by a simulation example.展开更多
In this paper, the multi-agent systems(MASs) typically with heterogeneous unknown nonlinearities and nonidentical unknown control coefficients are studied. Although the model information of MASs is coarse, the leader-...In this paper, the multi-agent systems(MASs) typically with heterogeneous unknown nonlinearities and nonidentical unknown control coefficients are studied. Although the model information of MASs is coarse, the leader-following consensus is still pursued, with a prescribed performance and zero consensus errors. Leveraging a powerful funnel control strategy, a fully distributed and completely relative-state-dependent protocol is designed. Distinctively, the time-varying function characterizing the performance boundary is introduced, not only to construct the funnel gains but also as an indispensable part of the protocol,enhancing the control ability and enabling the consensus errors to converge to zero(rather than a residual set). Remark that when control directions are unknown, coexisting with inherent system nonlinearities, it is essential to incorporate an additional compensation mechanism while imposing a hierarchical structure of communication topology for the control design and analysis. Simulation examples are given to illustrate the effectiveness of the theoretical results.展开更多
In this paper the distributed asymptotic consensus problem is addressed for a group of high-order nonaffine agents with uncertain dynamics,nonvanishing disturbances and unknown control directions under directed networ...In this paper the distributed asymptotic consensus problem is addressed for a group of high-order nonaffine agents with uncertain dynamics,nonvanishing disturbances and unknown control directions under directed networks.A class of auxiliary variables are first introduced which forms second-order filters and induces all measurable signals of agents’states.In view of this property,a distributed robust integral of the sign of the error(DRISE)design combined with the Nussbaum-type function is presented that guarantees not only the desired asymptotic consensus,but also the uniform boundedness of all closed-loop variables.Compared with the traditional sliding mode control(SMC)technique,the main feature of our approach is that the integral operation in the proposed control algorithm is designed to be adopted in a continuous manner and ensures less chattering behavior.Simulation results for a group of Duffing-Holmes chaotic systems are employed to verify our theoretical analysis.展开更多
This paper investigates a global asymptotic regulation control problem for a class of nonlinear systems with dynamic uncertainties.The requirement of a priori knowledge of control directions is removed and the inverse...This paper investigates a global asymptotic regulation control problem for a class of nonlinear systems with dynamic uncertainties.The requirement of a priori knowledge of control directions is removed and the inverse dynamics satisfy the weaker integral input-to-state stable condition.By application of the changing supply rates and the Nussbaum-type gain techniques,a partial state-feedback regulator is constructed.The main results demonstrate that the designed controller ensures the system state converges to the origin whereas the other signals of the closed-loop system are bounded. Simulation results are illustrated to show the effectiveness of the proposed approach.展开更多
This paper extends the unknown control coefficients with lower and upper constant bounds to the ones which may take arbitrarily large and /or small values.Since the existing methods are no longer applicable and the te...This paper extends the unknown control coefficients with lower and upper constant bounds to the ones which may take arbitrarily large and /or small values.Since the existing methods are no longer applicable and the technical obstacles caused by the extensions are essential,new control design scheme should be exploited to the global practical tracking.By the approaches of Nussbaum-gain and adding a power integrator,the authors successfully propose the design scheme of the adaptive practical tracking controller for the systems.It is shown that the designed controller guarantees that all the closed-loop system states are bounded and the tracking error becomes prescribed arbitrarily small after a finite time.展开更多
In this study,we present the convergence of time-varying net works.Then,we apply the convergence property to cooperative control of nonlinear multiagent systems(MASs)with unknown control directions(UCDs),and illustrat...In this study,we present the convergence of time-varying net works.Then,we apply the convergence property to cooperative control of nonlinear multiagent systems(MASs)with unknown control directions(UCDs),and illustrate a new kind of Nussbaum-type function based control algorithms.It is proven that if the time-varying net works are cut-balance,the convergence of nonlinear MASs with nonidentical UCDs is achieved using the presented algorithms.A critical feature of this application is that the designed algorithms can deal with nonidentical UCDs by employing conventional Nussbaum-type functions.Finally,one simulation example is given to illustrate the effectiveness of the presented algorithms.展开更多
基金National Natural Science Foundation of China(62373102)Jiangsu Natural Science Foundation(BK20221455)Anhui Provincial Key Research and Development Project(2022i01020013)。
文摘Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.
基金supported by National Natural Science Foundation of China (No. 60974139)Fundamental Research Funds for the Central Universities (No. 72103676)
文摘This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method.
基金supported in part by the National Key Research and Development Program of China under grant(No.2022YFB4701400/4701401)by the National Natural Science Foundation of China under grant(No.61991400,No.61991403,No.62250710167,No.61860206008,No.61933012,No.62273064,No.62203078)+2 种基金in part by the National Key Research and Development Program of China under grant(No.2021ZD0201300)in part by the Innovation Support Program for International Students Returning to China under grant(No.cx2022016)in part by the Chongqing Medical Scientific Research Project under grant(No.2022DBXM001).
文摘In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unknown nonlinearities and uncertainties,it is challenging to design a controller that can ensure the stability of closed-loop system within a predetermined finite time while maintaining the specified transient performance.The underlying problem becomes further complex as the control directions are unknown.To deal with the above problems,a special translation function as well as Nussbaum type function are introduced in the prescribed performance control(PPC)framework.Finally,a PPC as well as preset finite time tracking control scheme is designed,and its effectiveness is confirmed by both theoretical analysis and numerical simulation.
文摘The adaptive stabilization problem of nonlinear systems are studied. For a class of uncertain nonlinear systems with unknown control direction, we proposed a robust adaptive backstepping scheme withσ-modification by introducing Nussbaum function and Backstep- ping methods, and proved that all the signals of the closed-loop systems are bounded.
基金the Funds ofNational Science of China(Grant Nos.61973146,61773188,62173172)the Distinguished Young Scientific Research Talents Plan in Liaoning Province(Nos.XLYC1907077,JQL201915402).
文摘In the article,the issues of asymptotic adaptive tracking control for the uncertain nonlinear systems in the presence of actuator faults and unknown control directions are investigated.By using the properties of the Nussbaum function and backstepping technique,the problems resulting from the unknown signs of the nonlinear control functions are circumvented successfully.Moreover,a new adaptive asymptotic tracking control method is presented with the fault-tolerant control framework,which is capable of realising zero-tracking performance.The stability of the controlled system is ensured through fractional Lyapunov stability analysis.Finally,the validity of the raised scheme is verified by a simulation example.
基金supported in part by the National Natural Science Foundation of China(61821004,62033007)Major Fundamental Research Program of Shandong Province(ZR2023ZD37)
文摘In this paper, the multi-agent systems(MASs) typically with heterogeneous unknown nonlinearities and nonidentical unknown control coefficients are studied. Although the model information of MASs is coarse, the leader-following consensus is still pursued, with a prescribed performance and zero consensus errors. Leveraging a powerful funnel control strategy, a fully distributed and completely relative-state-dependent protocol is designed. Distinctively, the time-varying function characterizing the performance boundary is introduced, not only to construct the funnel gains but also as an indispensable part of the protocol,enhancing the control ability and enabling the consensus errors to converge to zero(rather than a residual set). Remark that when control directions are unknown, coexisting with inherent system nonlinearities, it is essential to incorporate an additional compensation mechanism while imposing a hierarchical structure of communication topology for the control design and analysis. Simulation examples are given to illustrate the effectiveness of the theoretical results.
基金This work was supported in part by the National Natural Science Foundation of China(61973074,61921004,U1713209).
文摘In this paper the distributed asymptotic consensus problem is addressed for a group of high-order nonaffine agents with uncertain dynamics,nonvanishing disturbances and unknown control directions under directed networks.A class of auxiliary variables are first introduced which forms second-order filters and induces all measurable signals of agents’states.In view of this property,a distributed robust integral of the sign of the error(DRISE)design combined with the Nussbaum-type function is presented that guarantees not only the desired asymptotic consensus,but also the uniform boundedness of all closed-loop variables.Compared with the traditional sliding mode control(SMC)technique,the main feature of our approach is that the integral operation in the proposed control algorithm is designed to be adopted in a continuous manner and ensures less chattering behavior.Simulation results for a group of Duffing-Holmes chaotic systems are employed to verify our theoretical analysis.
基金supported by the National Natural Science Foundation of China under Grant Nos.60674027, 60974127,and 60904022the Key Project Foundation of the Educational Ministry under Grant No.208074the Innovation Program of Graduate Students of Jiangsu Province of China under Grant No.CXZZ11_0155
文摘This paper investigates a global asymptotic regulation control problem for a class of nonlinear systems with dynamic uncertainties.The requirement of a priori knowledge of control directions is removed and the inverse dynamics satisfy the weaker integral input-to-state stable condition.By application of the changing supply rates and the Nussbaum-type gain techniques,a partial state-feedback regulator is constructed.The main results demonstrate that the designed controller ensures the system state converges to the origin whereas the other signals of the closed-loop system are bounded. Simulation results are illustrated to show the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundations of China under Grant No.60974003 and 61143011the Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China under Grant No.JQ200919+5 种基金the Program for New Century Excellent Talents in University of China under Grant No.NCET-07-0513the Key Science and Technique Foundation of Ministry of Education of China under Grant No.108079the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China under Grant No.2007BS01010the Independent Innovation Foundation of Shandong University under Grant No.2009JQ008the Scholarship Award for Excellent Doctoral Student granted by Ministry of Educationthe Graduate Independent Innovation Foundation of Shandong University
文摘This paper extends the unknown control coefficients with lower and upper constant bounds to the ones which may take arbitrarily large and /or small values.Since the existing methods are no longer applicable and the technical obstacles caused by the extensions are essential,new control design scheme should be exploited to the global practical tracking.By the approaches of Nussbaum-gain and adding a power integrator,the authors successfully propose the design scheme of the adaptive practical tracking controller for the systems.It is shown that the designed controller guarantees that all the closed-loop system states are bounded and the tracking error becomes prescribed arbitrarily small after a finite time.
基金Project supported by the National Natural Science Foundation of China(Nos.61973074,U1713209,61520106009,and 61533008)the National Key R&D Program of China(No.2018AAA0101400)+1 种基金the Science and Technology on Information System Engineering Laboratory,China(No.05201902)the Fundamental Research Funds for the Central Universities,China ORCID。
文摘In this study,we present the convergence of time-varying net works.Then,we apply the convergence property to cooperative control of nonlinear multiagent systems(MASs)with unknown control directions(UCDs),and illustrate a new kind of Nussbaum-type function based control algorithms.It is proven that if the time-varying net works are cut-balance,the convergence of nonlinear MASs with nonidentical UCDs is achieved using the presented algorithms.A critical feature of this application is that the designed algorithms can deal with nonidentical UCDs by employing conventional Nussbaum-type functions.Finally,one simulation example is given to illustrate the effectiveness of the presented algorithms.