The pursuit problem is a well-known problem in computer science. In this problem, a group of predator agents attempt to capture a prey agent in an environment with various obstacle types, partial observation, and an i...The pursuit problem is a well-known problem in computer science. In this problem, a group of predator agents attempt to capture a prey agent in an environment with various obstacle types, partial observation, and an infinite grid-world. Predator agents are applied algorithms that use the univector field method to reach the prey agent, strategies for avoiding obstacles and strategies for cooperation between predator agents. Obstacle avoidance strategies are generalized and presented through strategies called hitting and following boundary(HFB); trapped and following shortest path(TFSP); and predicted and following shortest path(PFSP). In terms of cooperation, cooperation strategies are employed to more quickly reach and capture the prey agent. Experimental results are shown to illustrate the efficiency of the method in the pursuit problem.展开更多
A novel approach was presented to solve the navigation problem of autonomous mobile robots in unknown environments with dense obstacles based on a univector field method. In an obstacle-free environment, a robot is en...A novel approach was presented to solve the navigation problem of autonomous mobile robots in unknown environments with dense obstacles based on a univector field method. In an obstacle-free environment, a robot is ensured to reach the goal position with the desired posture by following the univector field. Contrariwise, the univector field cannot guarantee that the robot will avoid obstacles in environments. In order to create an intelligent mobile robot being able to perform the obstacle avoidance task while following the univector field, Dyna-Q algorithm is developed to train the robot in learning moving directions to attain a collision-free path for its navigation. Simulations on the computer as well as experiments on the real world prove that the proposed algorithm is efficient for training the robot in reaching the goal position with the desired final orientation.展开更多
基金the Basic Science Research Program through the National Research Foundation of Korea (NRF-2014R1A1A2057735)the Kyung Hee University in 2016 [KHU-20160601]
文摘The pursuit problem is a well-known problem in computer science. In this problem, a group of predator agents attempt to capture a prey agent in an environment with various obstacle types, partial observation, and an infinite grid-world. Predator agents are applied algorithms that use the univector field method to reach the prey agent, strategies for avoiding obstacles and strategies for cooperation between predator agents. Obstacle avoidance strategies are generalized and presented through strategies called hitting and following boundary(HFB); trapped and following shortest path(TFSP); and predicted and following shortest path(PFSP). In terms of cooperation, cooperation strategies are employed to more quickly reach and capture the prey agent. Experimental results are shown to illustrate the efficiency of the method in the pursuit problem.
基金Project(2010-0012609) supported by the Basic Science Research Program,Korea
文摘A novel approach was presented to solve the navigation problem of autonomous mobile robots in unknown environments with dense obstacles based on a univector field method. In an obstacle-free environment, a robot is ensured to reach the goal position with the desired posture by following the univector field. Contrariwise, the univector field cannot guarantee that the robot will avoid obstacles in environments. In order to create an intelligent mobile robot being able to perform the obstacle avoidance task while following the univector field, Dyna-Q algorithm is developed to train the robot in learning moving directions to attain a collision-free path for its navigation. Simulations on the computer as well as experiments on the real world prove that the proposed algorithm is efficient for training the robot in reaching the goal position with the desired final orientation.