The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic tim...The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic time series including local mean prediction, local linear prediction and BP neural networks prediction are considered. The simulation results obtained by the Lorenz system show that no matter what nonlinear prediction method is used, the prediction error of multivariate chaotic time series is much smaller than the prediction error of univariate time series, even if half of the data of univariate time series are used in multivariate time series. The results also verify that methods to determine the time delays and the embedding dimensions are correct from the view of minimizing the prediction error.展开更多
Often many variables have to be analyzed for their importance in terms of significant contribution and predictability in medical research. One of the possible analytical tools may be the Multiple Linear Regression Ana...Often many variables have to be analyzed for their importance in terms of significant contribution and predictability in medical research. One of the possible analytical tools may be the Multiple Linear Regression Analysis. However, research papers usually report both univariate and multivariate regression analyses of the data. The biostatistician sometimes faces practical difficulties while selecting the independent variables for logical inclusion in the multivariate analysis. The selection criteria for inclusion of a variable in the multivariate regression is that the variable at the univariate level should have a regression coefficient with p 〈 0.20. However, there is a chance that an independent variable with p 〉 0.20 at univariate regression may become significant in the multivariate regression analysis and vice versa, provided the above criteria is not strictly adhered to. We undertook both univariate and multivariate linear regression analyses on data from two multi-centric clinical trials. We recommend that there is no need to restrict the p value of 〈= 0.20. Because of high speed computer and availability of statistical software, the desired results could be achieved by considering all relevant independent variables in multivariate regression analysis.展开更多
Mortality time series display time-varying volatility. The utility of statistical estimators from the financial time-series paradigm, which account for this characteristic, has not been addressed for high-frequency mo...Mortality time series display time-varying volatility. The utility of statistical estimators from the financial time-series paradigm, which account for this characteristic, has not been addressed for high-frequency mortality series. Using daily mean-mortality series of an exemplar intensive care unit (ICU) from the Australian and New Zealand Intensive Care Society adult patient database, joint estimation of a mean and conditional variance (volatility) model for a stationary series was undertaken via univariate autoregressive moving average (ARMA, lags (p, q)), GARCH (Generalised Autoregressive Conditional Heteroscedasticity, lags (p, q)). The temporal dynamics of the conditional variance and correlations of multiple provider series, from rural/ regional, metropolitan, tertiary and private ICUs, were estimated utilising multivariate GARCH models. For the stationary first differenced series, an asymmetric power GARCH model (lags (1, 1)) with t distribution (degrees-of- freedom, 11.6) and ARMA (7,0) for the mean-model, was the best-fitting. The four multivariate component series demonstrated varying trend mortality decline and persistent autocorrelation. Within each MGARCH series no model specification dominated. The conditional correlations were surprisingly low (<0.1) between tertiary series and substantial (0.4 - 0.6) between rural-regional and private series. The conditional-variances of both the univariate and multivariate series demonstrated a slow rate of time decline from periods of early volatility and volatility spikes.展开更多
The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first dis...The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first discuss the relation between zero coprime equivalence and unimodular equivalence for polynomial matrices.Then,we investigate the zero coprime equivalence problem for several classes of polynomial matrices,some novel findings and criteria on reducing these matrices to their Smith normal forms are obtained.Finally,an example is provided to illustrate the main results.展开更多
[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shan...[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shannon-Wiener diversity index, cluster analysis of multivariate statistical analysis and MDS (Non-matric Multi- dimentional Scaling)analysis were used to analyze biological data of phytoplankton, zooplankton and Zoobenthos collected from the representative municipal polluted river in Pearl River Delta. The sediment samples were also collected to determine. Pb, Cd, Hg, Cr, As, Cu, Ni, Zn, as well as CODe, and NH3-N of porewater. Hakanson potential ecological risk index method was used to evaluate the ecological risk. [Re- suit] Shannon-Wiener diversity index analysis results can not effectively reflect the difference of pollution status of various stations in heavy polluted area; despite the presence of some problems, multivariate analysis method is superior to the Shannon-Wiener diversity index method in biological monitoring of heavy polluted river in the city. [Conclusion] The paper provided theoretical basis for biological data analysis in heavy polluted area.展开更多
The analysis result of absolute degree of grey incidence for multivariate time series is often inconsistent with the qualitative analysis. To overcome this shortage, a multivariate absolute degree of grey incidence ba...The analysis result of absolute degree of grey incidence for multivariate time series is often inconsistent with the qualitative analysis. To overcome this shortage, a multivariate absolute degree of grey incidence based on distribution characteristics of points is proposed. Based on the geometric description of multivariate time se- ries, the neighborhood extrema are extracted in the different regions, and a characteristic point set is constructed. Then according to the distribution of the characteristic point set, a characteristic point sequence reflecting the ge- ometric features of multivariate time series is obtained. The incidence analysis between multivariate time series is transformed into the relational analysis between characteristic point sequences, and a grey incidence model is established. The model possesses the properties of translational invariance, transpose and rank transform invari- ance, and satisfies the grey incidence analysis axioms. Finally, two cases are studied and the results prove the ef- fectiveness of the model.展开更多
This paper considers the upper orthant and extremal tail dependence indices for multivariate t-copula. Where, the multivariate t-copula is defined under a correlation structure. The explicit representations of the tai...This paper considers the upper orthant and extremal tail dependence indices for multivariate t-copula. Where, the multivariate t-copula is defined under a correlation structure. The explicit representations of the tail dependence parameters are deduced since the copula of continuous variables is invariant under strictly increasing transformation about the random variables, which are more simple than those obtained in previous research. Then, the local monotonicity of these indices about the correlation coefficient is discussed, and it is concluded that the upper extremal dependence index increases with the correlation coefficient, but the monotonicity of the upper orthant tail dependence index is complex. Some simulations are performed by the Monte Carlo method to verify the obtained results, which are found to be satisfactory. Meanwhile, it is concluded that the obtained conclusions can be extended to any distribution family in which the generating random variable has a regularly varying distribution.展开更多
Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was foun...Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities.展开更多
Multivariate statistical techniques,cluster analysis,non-parametric tests,and factor analysis were applied to analyze a water quality dataset including 13 parameters at 37 sites of the Three Gorges area,China,from 200...Multivariate statistical techniques,cluster analysis,non-parametric tests,and factor analysis were applied to analyze a water quality dataset including 13 parameters at 37 sites of the Three Gorges area,China,from 2003–2008 to investigate spatio-temporal variations and identify potential pollution sources.Using cluster analysis,the twelve months of the year were classified into three periods of lowflow (LF),normal-flow (NF),and high-flow (HF);and the 37 monitoring sites were divided into low pollution (LP),moderate pollution (MP),and high pollution (HP).Dissolved oxygen (DO),potassium permanganate index (COD Mn ),and ammonia-nitrogen (NH 4 +-N) were identified as significant variables affecting temporal and spatial variations by non-parametric tests.Factor analysis identified that the major pollutants in the HP region were organic matters and nutrients during NF,heavy metals during LF,and petroleum during HF.In the MP region,the identified pollutants primarily included organic matter and heavy metals year-around,while in the LP region,organic pollution was significant during both NF and HF,and nutrient and heavy metal levels were high during both LF and HF.The main sources of pollution came from domestic wastewater and agricultural activities and runoff;however,they contributed differently to each region in regards to pollution levels.For the HP region,inputs from wastewater treatment plants were significant;but for MP and LP regions,water pollution was more likely from the combined effects of agriculture,domestic wastewater,and chemical industry.These results provide fundamental information for developing better water pollution control strategies for the Three Gorges area.展开更多
Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and...Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.展开更多
A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, struc...A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, structuralgeometric characteristics and static loads. The structuralresponse is first expressed as a multivariable power polynomialexpansion, of which the coefficients ae then determined by utilizing the higher-order perturbation technique and Galerkinprojection scheme. Then, the final performance function ofthe structure is determined. Due to the explicitness of theperformance function, a multifold integral of the structuralfailure probability can be calculated directly by the Monte Carlo simulation, which only requires a smal amount ofcomputation time. Two numerical examples ae presented toillustate te accuracy ad efficiency of te proposed metiod. It is shown that compaed with the widely used first-orderreliability method ( FORM) and second-order reliabilitymethod ( SORM), te results of the proposed method are closer to that of the direct Monte Carlo metiod,and it requires much less computational time.展开更多
In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar re...In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar remote sensing data and geographic information system(GIS), for landslide susceptibility mapping(LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory(70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party(ILWP), Forestry, Rangeland and Watershed Organisation(FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve(AUC), frequency ratio(FR) and seed cell area index(SCAI).Normalised difference vegetation index, land use/land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models(AUC = 0.912(91.2%) and 0.907(90.7%), respectively) had high predictive accuracy than the LNRF model alone(AUC = 0.855(85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping.展开更多
Understanding the controlling factor of groundwater quality can enhance promoting sustainable development of groundwater resources. To this end, multivariate statistical analysis(MA) and hydrochemical analysis were ...Understanding the controlling factor of groundwater quality can enhance promoting sustainable development of groundwater resources. To this end, multivariate statistical analysis(MA) and hydrochemical analysis were introduced in this work. The results indicate that the canonical discriminant function with 7 parameters was established using the discriminant analysis(DA) method, which can afford 100% correct assignation according to the 3 different clusters(good water(GW), poor water(PW), and very poor water(VPW)) obtained from cluster analysis(CA). According to factor analysis(FA), 8 factors were extracted from 25 hydrochemical elements and account for 80.897% of the total data variance, suggesting that groundwater with higher concentrations of sodium, calcium, magnesium, chloride, and sulfate in southeastern study area are mainly affected by the natural process; the higher level of arsenic and chromium in groundwater extracted from northwestern part of study area are derived by industrial activities; domestic and agriculture sewage have important contribution to copper, iron, iodine, and phosphate in the northern study area. Therefore, this work can help identify the main controlling factor of groundwater quality in North China plain so as to make better and more informed decisions about how to achieve groundwater resources sustainable development.展开更多
Multivariate pattern analysis(MVPA) is a recently-developed approach for functional magnetic resonance imaging(fMRI) data analyses.Compared with the traditional univariate methods,MVPA is more sensitive to subtle ...Multivariate pattern analysis(MVPA) is a recently-developed approach for functional magnetic resonance imaging(fMRI) data analyses.Compared with the traditional univariate methods,MVPA is more sensitive to subtle changes in multivariate patterns in fMRI data.In this review,we introduce several significant advances in MVPA applications and summarize various combinations of algorithms and parameters in different problem settings.The limitations of MVPA and some critical questions that need to be addressed in future research are also discussed.展开更多
In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geo...In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.展开更多
To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on princip...To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.展开更多
Dongguan (东莞) City, located in the Pearl River Delta, South China, is famous for its rapid industrialization in the past 30 years. A total of 90 topsoil samples have been collected from agricultural fields, includ...Dongguan (东莞) City, located in the Pearl River Delta, South China, is famous for its rapid industrialization in the past 30 years. A total of 90 topsoil samples have been collected from agricultural fields, including vegetable and orchard soils in the city, and eight heavy metals (As, Cu, Cd, Cr, Hg, Ni, Pb, and Zn) and other items (pH values and organic matter) have been analyzed, to evaluate the influence of anthropic activities on the environmental quality of agricultural soils and to identify the spatial distribution of trace elements and possible sources of trace elements. The elements Hg, Pb, and Cd have accumulated remarkably here, incomparison with the soil background content of elements in Guangdong (广东) Province. Pollution is more serious in the western plain and the central region, which are heavily distributed with industries and rivers. Multivariate and geostatistical methods have been applied to differentiate the influences of natural processes and human activities on the pollution of heavy metals in topsoils in the study area. The results of cluster analysis (CA) and factor analysis (FA) show that Ni, Cr, Cu, Zn, and As are grouped in factor F1, Pb in F2, and Cd and Hg in F3, respectively. The spatial pattern of the three factors may be well demonstrated by geostatistical analysis. It is shown that the first factor could be considered as a natural source controlled by parent rocks. The second factor could be referred to as "industrial and traffic pollution sources". The source of the third factor is mainly controlled by long-term anthropic activities, as a consequence of agricultural activities, fossil fuel consumption, and atmospheric deposition.展开更多
文摘The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic time series including local mean prediction, local linear prediction and BP neural networks prediction are considered. The simulation results obtained by the Lorenz system show that no matter what nonlinear prediction method is used, the prediction error of multivariate chaotic time series is much smaller than the prediction error of univariate time series, even if half of the data of univariate time series are used in multivariate time series. The results also verify that methods to determine the time delays and the embedding dimensions are correct from the view of minimizing the prediction error.
文摘Often many variables have to be analyzed for their importance in terms of significant contribution and predictability in medical research. One of the possible analytical tools may be the Multiple Linear Regression Analysis. However, research papers usually report both univariate and multivariate regression analyses of the data. The biostatistician sometimes faces practical difficulties while selecting the independent variables for logical inclusion in the multivariate analysis. The selection criteria for inclusion of a variable in the multivariate regression is that the variable at the univariate level should have a regression coefficient with p 〈 0.20. However, there is a chance that an independent variable with p 〉 0.20 at univariate regression may become significant in the multivariate regression analysis and vice versa, provided the above criteria is not strictly adhered to. We undertook both univariate and multivariate linear regression analyses on data from two multi-centric clinical trials. We recommend that there is no need to restrict the p value of 〈= 0.20. Because of high speed computer and availability of statistical software, the desired results could be achieved by considering all relevant independent variables in multivariate regression analysis.
文摘Mortality time series display time-varying volatility. The utility of statistical estimators from the financial time-series paradigm, which account for this characteristic, has not been addressed for high-frequency mortality series. Using daily mean-mortality series of an exemplar intensive care unit (ICU) from the Australian and New Zealand Intensive Care Society adult patient database, joint estimation of a mean and conditional variance (volatility) model for a stationary series was undertaken via univariate autoregressive moving average (ARMA, lags (p, q)), GARCH (Generalised Autoregressive Conditional Heteroscedasticity, lags (p, q)). The temporal dynamics of the conditional variance and correlations of multiple provider series, from rural/ regional, metropolitan, tertiary and private ICUs, were estimated utilising multivariate GARCH models. For the stationary first differenced series, an asymmetric power GARCH model (lags (1, 1)) with t distribution (degrees-of- freedom, 11.6) and ARMA (7,0) for the mean-model, was the best-fitting. The four multivariate component series demonstrated varying trend mortality decline and persistent autocorrelation. Within each MGARCH series no model specification dominated. The conditional correlations were surprisingly low (<0.1) between tertiary series and substantial (0.4 - 0.6) between rural-regional and private series. The conditional-variances of both the univariate and multivariate series demonstrated a slow rate of time decline from periods of early volatility and volatility spikes.
基金Supported by the National Natural Science Foundation of China(12271154)the Natural Science Foundation of Hunan Province(2022JJ30234)the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20231032)。
文摘The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first discuss the relation between zero coprime equivalence and unimodular equivalence for polynomial matrices.Then,we investigate the zero coprime equivalence problem for several classes of polynomial matrices,some novel findings and criteria on reducing these matrices to their Smith normal forms are obtained.Finally,an example is provided to illustrate the main results.
基金Supported by National Natural Science Foundation of China(41001341)Natural Science Foundation of Guangdong Province(9152800001000007)+1 种基金Open Fund ofState Key Laboratory of Subtropical Building Science(2011KB12)Basic Scientific Research Expenses Project of Central Universities(2012ZM0082)~~
文摘[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shannon-Wiener diversity index, cluster analysis of multivariate statistical analysis and MDS (Non-matric Multi- dimentional Scaling)analysis were used to analyze biological data of phytoplankton, zooplankton and Zoobenthos collected from the representative municipal polluted river in Pearl River Delta. The sediment samples were also collected to determine. Pb, Cd, Hg, Cr, As, Cu, Ni, Zn, as well as CODe, and NH3-N of porewater. Hakanson potential ecological risk index method was used to evaluate the ecological risk. [Re- suit] Shannon-Wiener diversity index analysis results can not effectively reflect the difference of pollution status of various stations in heavy polluted area; despite the presence of some problems, multivariate analysis method is superior to the Shannon-Wiener diversity index method in biological monitoring of heavy polluted river in the city. [Conclusion] The paper provided theoretical basis for biological data analysis in heavy polluted area.
基金Supported by the National Natural Science Foundation of China(71101043,70901041,71171113)the Joint Research Project of National Natural Science Foundation of China and Royal Society of UK(71111130211)+4 种基金the Major Program of National Funds of Social Science of China(10ZD&014,11&ZD168)the Doctoral Fundof Ministry of Education of China(20093218120032,200802870020)the Qinglan Project for Excellent Youth Teacherin Jiangsu Province(China)Research Funding in Nanjing University of Aeronautics and Astronautics(NR2011002)the Central University Scientific Research Expenses of HoHai University(2011B09914,2010B11114)~~
文摘The analysis result of absolute degree of grey incidence for multivariate time series is often inconsistent with the qualitative analysis. To overcome this shortage, a multivariate absolute degree of grey incidence based on distribution characteristics of points is proposed. Based on the geometric description of multivariate time se- ries, the neighborhood extrema are extracted in the different regions, and a characteristic point set is constructed. Then according to the distribution of the characteristic point set, a characteristic point sequence reflecting the ge- ometric features of multivariate time series is obtained. The incidence analysis between multivariate time series is transformed into the relational analysis between characteristic point sequences, and a grey incidence model is established. The model possesses the properties of translational invariance, transpose and rank transform invari- ance, and satisfies the grey incidence analysis axioms. Finally, two cases are studied and the results prove the ef- fectiveness of the model.
基金The National Natural Science Foundation of China(No.11001052,11171065)the National Science Foundation of Jiangsu Province(No.BK2011058)the Science Foundation of Nanjing University of Posts and Telecommunications(No.JG00710JX57)
文摘This paper considers the upper orthant and extremal tail dependence indices for multivariate t-copula. Where, the multivariate t-copula is defined under a correlation structure. The explicit representations of the tail dependence parameters are deduced since the copula of continuous variables is invariant under strictly increasing transformation about the random variables, which are more simple than those obtained in previous research. Then, the local monotonicity of these indices about the correlation coefficient is discussed, and it is concluded that the upper extremal dependence index increases with the correlation coefficient, but the monotonicity of the upper orthant tail dependence index is complex. Some simulations are performed by the Monte Carlo method to verify the obtained results, which are found to be satisfactory. Meanwhile, it is concluded that the obtained conclusions can be extended to any distribution family in which the generating random variable has a regularly varying distribution.
文摘Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities.
基金supported by the National Water Special Project (No.2009ZX07526-005)the Strategic Environmental Assessment Project (No.HP1080901)
文摘Multivariate statistical techniques,cluster analysis,non-parametric tests,and factor analysis were applied to analyze a water quality dataset including 13 parameters at 37 sites of the Three Gorges area,China,from 2003–2008 to investigate spatio-temporal variations and identify potential pollution sources.Using cluster analysis,the twelve months of the year were classified into three periods of lowflow (LF),normal-flow (NF),and high-flow (HF);and the 37 monitoring sites were divided into low pollution (LP),moderate pollution (MP),and high pollution (HP).Dissolved oxygen (DO),potassium permanganate index (COD Mn ),and ammonia-nitrogen (NH 4 +-N) were identified as significant variables affecting temporal and spatial variations by non-parametric tests.Factor analysis identified that the major pollutants in the HP region were organic matters and nutrients during NF,heavy metals during LF,and petroleum during HF.In the MP region,the identified pollutants primarily included organic matter and heavy metals year-around,while in the LP region,organic pollution was significant during both NF and HF,and nutrient and heavy metal levels were high during both LF and HF.The main sources of pollution came from domestic wastewater and agricultural activities and runoff;however,they contributed differently to each region in regards to pollution levels.For the HP region,inputs from wastewater treatment plants were significant;but for MP and LP regions,water pollution was more likely from the combined effects of agriculture,domestic wastewater,and chemical industry.These results provide fundamental information for developing better water pollution control strategies for the Three Gorges area.
文摘Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.
基金The National Natural Science Foundation of China(No.51378407,51578431)
文摘A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, structuralgeometric characteristics and static loads. The structuralresponse is first expressed as a multivariable power polynomialexpansion, of which the coefficients ae then determined by utilizing the higher-order perturbation technique and Galerkinprojection scheme. Then, the final performance function ofthe structure is determined. Due to the explicitness of theperformance function, a multifold integral of the structuralfailure probability can be calculated directly by the Monte Carlo simulation, which only requires a smal amount ofcomputation time. Two numerical examples ae presented toillustate te accuracy ad efficiency of te proposed metiod. It is shown that compaed with the widely used first-orderreliability method ( FORM) and second-order reliabilitymethod ( SORM), te results of the proposed method are closer to that of the direct Monte Carlo metiod,and it requires much less computational time.
基金supported by the Centre for Advanced Modelling and Geospatial Information Systems(CAMGIS),UTS under grant numbers 321740.2232335,323930,and 321740.2232357
文摘In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar remote sensing data and geographic information system(GIS), for landslide susceptibility mapping(LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory(70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party(ILWP), Forestry, Rangeland and Watershed Organisation(FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve(AUC), frequency ratio(FR) and seed cell area index(SCAI).Normalised difference vegetation index, land use/land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models(AUC = 0.912(91.2%) and 0.907(90.7%), respectively) had high predictive accuracy than the LNRF model alone(AUC = 0.855(85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping.
基金supported by the Major State Basic Research Development Program (No. 2010CB428800)the Geological Survey Projects Foundation of Institute of Hydrogeology and Environmental Geology (No. SK201308)
文摘Understanding the controlling factor of groundwater quality can enhance promoting sustainable development of groundwater resources. To this end, multivariate statistical analysis(MA) and hydrochemical analysis were introduced in this work. The results indicate that the canonical discriminant function with 7 parameters was established using the discriminant analysis(DA) method, which can afford 100% correct assignation according to the 3 different clusters(good water(GW), poor water(PW), and very poor water(VPW)) obtained from cluster analysis(CA). According to factor analysis(FA), 8 factors were extracted from 25 hydrochemical elements and account for 80.897% of the total data variance, suggesting that groundwater with higher concentrations of sodium, calcium, magnesium, chloride, and sulfate in southeastern study area are mainly affected by the natural process; the higher level of arsenic and chromium in groundwater extracted from northwestern part of study area are derived by industrial activities; domestic and agriculture sewage have important contribution to copper, iron, iodine, and phosphate in the northern study area. Therefore, this work can help identify the main controlling factor of groundwater quality in North China plain so as to make better and more informed decisions about how to achieve groundwater resources sustainable development.
基金supported by grants from the National Natural Science Foundation of China (30900366,31070905)
文摘Multivariate pattern analysis(MVPA) is a recently-developed approach for functional magnetic resonance imaging(fMRI) data analyses.Compared with the traditional univariate methods,MVPA is more sensitive to subtle changes in multivariate patterns in fMRI data.In this review,we introduce several significant advances in MVPA applications and summarize various combinations of algorithms and parameters in different problem settings.The limitations of MVPA and some critical questions that need to be addressed in future research are also discussed.
文摘In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.
基金supported by the National Natural Science Foundation of China(71401052)the Key Project of National Social Science Fund of China(12AZD108)+2 种基金the Doctoral Fund of Ministry of Education(20120094120024)the Philosophy and Social Science Fund of Jiangsu Province Universities(2013SJD630073)the Central University Basic Service Project Fee of Hohai University(2011B09914)
文摘To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.
基金supported by the Ministry of Land and Resources of China (No. [2005]011-16)State Environment Protection Administration of China (No. 2001-1-2)+2 种基金State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciencesthe Guangdong Provincial Office of SciencesTechnology via NSF Team Project and Key Project (Nos. 06202438, 2004A3030800)
文摘Dongguan (东莞) City, located in the Pearl River Delta, South China, is famous for its rapid industrialization in the past 30 years. A total of 90 topsoil samples have been collected from agricultural fields, including vegetable and orchard soils in the city, and eight heavy metals (As, Cu, Cd, Cr, Hg, Ni, Pb, and Zn) and other items (pH values and organic matter) have been analyzed, to evaluate the influence of anthropic activities on the environmental quality of agricultural soils and to identify the spatial distribution of trace elements and possible sources of trace elements. The elements Hg, Pb, and Cd have accumulated remarkably here, incomparison with the soil background content of elements in Guangdong (广东) Province. Pollution is more serious in the western plain and the central region, which are heavily distributed with industries and rivers. Multivariate and geostatistical methods have been applied to differentiate the influences of natural processes and human activities on the pollution of heavy metals in topsoils in the study area. The results of cluster analysis (CA) and factor analysis (FA) show that Ni, Cr, Cu, Zn, and As are grouped in factor F1, Pb in F2, and Cd and Hg in F3, respectively. The spatial pattern of the three factors may be well demonstrated by geostatistical analysis. It is shown that the first factor could be considered as a natural source controlled by parent rocks. The second factor could be referred to as "industrial and traffic pollution sources". The source of the third factor is mainly controlled by long-term anthropic activities, as a consequence of agricultural activities, fossil fuel consumption, and atmospheric deposition.