Constructing a weighting soil layer at the downstream toe of dike on layered ground is an effective measure to prevent the foundation from blowout failures. In this paper, a series of differential equations describing...Constructing a weighting soil layer at the downstream toe of dike on layered ground is an effective measure to prevent the foundation from blowout failures. In this paper, a series of differential equations describing the seepage flow in layered dike foundation were established, and a united method combining analytic method with one-dimensional finite difference method was proposed for solving the equations. The case study shows that the results calculated by the united method are considerably identical to the computational results of Finite Element Method (FEM), and the united method is very simple and easy compared to the FEM.展开更多
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
Repeated Unit Cell(RUC)is a useful tool in micromechanical analysis of composites using Displacement-based Finite Element(DFE)method,and merely applying Periodic Displacement Boundary Conditions(PDBCs)to RUC is ...Repeated Unit Cell(RUC)is a useful tool in micromechanical analysis of composites using Displacement-based Finite Element(DFE)method,and merely applying Periodic Displacement Boundary Conditions(PDBCs)to RUC is almost a standard practice to conduct such analysis.Two basic questions arising from this practice are whether Periodic Traction Boundary Conditions(PTBCs,also known as traction continuity conditions)are guaranteed and whether the solution is independent of selection of RUCs.This paper presents the theoretical aspects to tackle these questions,which unify the strong form,weak form and DFE method of the micromechanical problem together.Specifically,the solution’s independence of selection of RUCs is dealt with on the strong form side,PTBCs are derived from the weak form as natural boundary conditions,and the validity of merely applying PDBCs in micromechanical Finite Element(FE)analysis is proved by referring to its intrinsic connection to the strong form and weak form.Key points in the theoretical aspects are demonstrated by illustrative examples,and the merits of setting micromechanical FE analysis under the background of a clear theoretical framework are highlighted in the efficient selection of RUCs for Uni Directional(UD)fiber-reinforced composites.展开更多
[Objectives]This study aimed to investigate the incidence and risk factors associated with SSD in patients following cardiac surgery.[Methods]A total of 378 patients who underwent cardiac surgery in Taihe Hospital wer...[Objectives]This study aimed to investigate the incidence and risk factors associated with SSD in patients following cardiac surgery.[Methods]A total of 378 patients who underwent cardiac surgery in Taihe Hospital were recruited and screened.Diagnosis of delirium was made using evaluation methods and DSM-5 criteria.SSD was defined as the presence of one or more core features of delirium without meeting the full diagnostic criteria.Statistical analysis included independent samples t-test for group comparisons and binary logistic regression analysis to identify independent risk factors for SSD after cardiac surgery.[Results]Among the 378 subjects,112(29.63%)had SSD,28(7.41%)had delirium,and the remaining 238 patients(62.96%)did not present with delirium.Univariate analysis revealed that age,APACHE II score,duration of aortic clamping,length of ICU stay,duration of sedation use,and daily sleep time were significant risk factors for the occurrence of SSD(P<0.05).Logistic regression analysis identified age>70 years old,APACHE II score>20 points,length of ICU stay>5 d,and duration of sedation use>24 h as independent risk factors for SSD after cardiac surgery(P<0.05).A functional model was fitted based on the analysis results of the binary logistic regression model,yielding the equation logit P=1.472X_(1)+2.213X_(2)+3.028X_(3)+1.306X_(4).[Conclusions]Comprehensive clinical assessment is crucial for patients undergoing cardiac surgery,and appropriate preventive measures should be taken for patients with identified risk factors.Close monitoring of the patient s consciousness should be implemented postoperatively,and timely interventions should be conducted.Further research should focus on model validation and optimization.展开更多
The changes of structural and functional parameters of aquatic microbial communities in continuous water on campus of Tsinghua University, China are investigated by polyurethane foam unit(PFU) method. The measured com...The changes of structural and functional parameters of aquatic microbial communities in continuous water on campus of Tsinghua University, China are investigated by polyurethane foam unit(PFU) method. The measured compositions of the communities include alga, protozoa, and some metazoa(such as rotifers). The measured indicators of water quality include water temperature, pH value, dissolved oxygen(DO), potassium permanganate index(COD Mn ), total nitrogen(TN), total phosphorus(TP) and chlorophyll-a(Chla). The trophic level, expressed by the trophic level indices(TLIc), is assessed with analytic hierarchy process and principal component analysis(AHP-PCA) method. The changing trends of the structural and functional parameters of aquatic microbial communities, such as Margalef index of diversity(D), Shannon-weaver index of diversity (H), Heterotropy index(HI), number of species when the colonization gets equilibrium(S eq ), colonizing speed constant(G) and time spent when 90 percent of S eq colonized in PFU(T 90% ), are also analyzed. The experimental results showed the succession of aquatic microbial communities along the water flow is consistent with the water quality changes, so the parameters of microbial community can reflect the changes of water quality from the ecological view.展开更多
The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crud...The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for PANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial lim- itations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM (LBGK, MRT) and the numerical schemes for convection terms (WENO, TVD) and production terms (FDM, NEQM) in an explic- itly solved standard k-e model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 107. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes.Then we proposed a new method to accelerate the coupled model of LBM with RANS (implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold accelera- tion relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume (FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM-RANS methods.展开更多
Proton-rich nuclei are synthesized via photodisintegration and reverse reactions.To examine this mechanism and reproduce the observed p-nucleus abundances,it is crucial to know the reaction rates and thereby the react...Proton-rich nuclei are synthesized via photodisintegration and reverse reactions.To examine this mechanism and reproduce the observed p-nucleus abundances,it is crucial to know the reaction rates and thereby the reaction cross sections of many isotopes.Given that the number of experiments on the reactions in astrophysical energy regions is very rare,the reaction cross sections are determined by theoretical methods whose accuracy should be tested.In this study,given that ^(121)Sb is a stable seed isotope located in the region of medium-mass p-nuclei,we investigated the cross sections and reaction rates of the ^(121)Sb(α,γ)^(125)I reaction using the TALYS computer code with 432 different combinations of input parameters(OMP,LDM,and SFM).The optimal model combinations were determined using the threshold logic unit method.The theoretical reaction cross-sectional results were compared with the experimental results reported in the literature.The reaction rates were determined using the two input parameter sets most compatible with the measurements,and they were compared with the reaction rate databases:STARLIB and REACLIB.展开更多
A three-dimensional contact model of 1×7 steel strand was established. Contact point was searched by Splitting-pinball algorithm, and Augmented-Lagrangian algorithm was applied for analysis of contact loads. The ...A three-dimensional contact model of 1×7 steel strand was established. Contact point was searched by Splitting-pinball algorithm, and Augmented-Lagrangian algorithm was applied for analysis of contact loads. The exerted tensile loads to the model were analyzed using finite element method. After analyzing calculation results, the laws of steel wire stress distribution in axis direction and in its cross-section were found. Friction coefficients were set as 0.10, 0.11, and 0.12, respec- tively, to obtain the influence law of friction coefficient to steel wire stresses. Research result shows that friction coefficient has significant influence on the shear stress of steel wire. Analyzed the calculation results of steel strand with five different lay pitch multiples and got the influence law of lay pitch multiple to the stresses of steel wire in steel strand. The Von Misses stress of steel wire increases following with the increasing of lay pitches nmltiples, but the increment value is not very prominent. The shear stress of steel wire decreases following the increase of lay pitch multiple, and the changing amplitude is large when lay pitch multiple is small. Finally, carried out a steel strand tensile deformation test and the consistency of test results with the calculation results shows that the selected model is reasonable.展开更多
This paper focus on the accuracy enhancement of parallel kinematics machine through kinematics calibration. In the calibration processing, well-structured identification Jacobian matrix construction and end-effector p...This paper focus on the accuracy enhancement of parallel kinematics machine through kinematics calibration. In the calibration processing, well-structured identification Jacobian matrix construction and end-effector position and orientation measurement are two main difficulties. In this paper, the identification Jacobian matrix is constructed easily by numerical calculation utilizing the unit virtual velocity method. The generalized distance errors model is presented for avoiding measuring the position and orientation directly which is difficult to be measured. At last, a measurement tool is given for acquiring the data points in the calibration processing. Experimental studies confirmed the effectiveness of method. It is also shown in the paper that the proposed approach can be applied to other typed parallel manipulators.展开更多
The stress rate integral equations of elastoplasticity are deduced based on Ref. [1] by consistent methods. The point at which the stresses and/or displacements are calculated can be in the body or on the boundary, an...The stress rate integral equations of elastoplasticity are deduced based on Ref. [1] by consistent methods. The point at which the stresses and/or displacements are calculated can be in the body or on the boundary, and in the plastic region or elastic one. The existence of the principal value integral in the plastic region is demonstrated strictly, and the theoretical basis is presented for the paticular solution method by unit initial stress fields. In the present method, programming is easy and general, and the numerical results are excellent.展开更多
Uncertainty exists widely in hydrological analysis, and this makes the process of uncertainty assessment very im- portant for making robust decisions. In this study, uncertainty sources in regional rainfall frequency ...Uncertainty exists widely in hydrological analysis, and this makes the process of uncertainty assessment very im- portant for making robust decisions. In this study, uncertainty sources in regional rainfall frequency analysis are identified for the first time. The numeral unite spread assessment pedigree (NUSAP) method is introduced and is first employed to quantify qual- itative uncertainty in regional rainfall frequency analysis. A pedigree matrix is particularly designed for regional rainfall frequency analysis, by which the qualitative uncertainty can be quantified. Finally, the qualitative and quantitative uncertainties are com- bined in an uncertainty diagnostic diagram, which makes the uncertainty evaluation results more intuitive. From the integrated diagnostic diagram, it can be determined that the uncertainty caused by the precipitation data is the smallest, and the uncertainty from different grouping methods is the largest. For the downstream sub-region, a generalized extreme value (GEV) distribution is better than a generalized logistic (GLO) distribution; for the south sub-region, a Pearson type III (PE3) distribution is the better choice; and for the north sub-region, GEV is more appropriate.展开更多
Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditiona...Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.展开更多
The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouri...The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model.展开更多
700°C double reheat advanced ultra-supercritical power generation technology is one of the most important development directions for the efficient and clean utilization of coal.To solve the great exergy loss prob...700°C double reheat advanced ultra-supercritical power generation technology is one of the most important development directions for the efficient and clean utilization of coal.To solve the great exergy loss problem caused by the high superheat degrees of regenerative steam extractions in 700°C double reheat advanced ultra-supercritical power generation system,two optimization systems are proposed in this paper.System 1 is integrated with the back pressure extraction steam turbine,and system 2 is simultaneously integrated with both the outside steam cooler and back pressure extraction steam turbine.The system performance models are built by the Ebsilon Professional software.The performances of optimized systems are analyzed by the unit consumption method.The off-design performances of optimization systems are analyzed.The results show that:the standard power generation coal consumption rates of optimization systems 1 and 2 are decreased by 1.88 g·(kW·h)^(–1),2.97 g·(kW·h)^(–1)compared with that of the 700°C reference system;the average superheat degrees of regenerative steam extractions of optimized systems 1 and 2 are decreased by 122.2°C,140.7°C(100%turbine heat acceptance condition),respectively.The comparison results also show that the performance of the optimized system 2 is better than those of the optimized system 1 and the 700°C reference system.The power generation standard coal consumption rate and the power generation efficiency of the optimized system 2 are about 232.08 g·(kW·h)^(–1)and 52.96%(100%turbine heat acceptance condition),respectively.展开更多
文摘Constructing a weighting soil layer at the downstream toe of dike on layered ground is an effective measure to prevent the foundation from blowout failures. In this paper, a series of differential equations describing the seepage flow in layered dike foundation were established, and a united method combining analytic method with one-dimensional finite difference method was proposed for solving the equations. The case study shows that the results calculated by the united method are considerably identical to the computational results of Finite Element Method (FEM), and the united method is very simple and easy compared to the FEM.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
文摘Repeated Unit Cell(RUC)is a useful tool in micromechanical analysis of composites using Displacement-based Finite Element(DFE)method,and merely applying Periodic Displacement Boundary Conditions(PDBCs)to RUC is almost a standard practice to conduct such analysis.Two basic questions arising from this practice are whether Periodic Traction Boundary Conditions(PTBCs,also known as traction continuity conditions)are guaranteed and whether the solution is independent of selection of RUCs.This paper presents the theoretical aspects to tackle these questions,which unify the strong form,weak form and DFE method of the micromechanical problem together.Specifically,the solution’s independence of selection of RUCs is dealt with on the strong form side,PTBCs are derived from the weak form as natural boundary conditions,and the validity of merely applying PDBCs in micromechanical Finite Element(FE)analysis is proved by referring to its intrinsic connection to the strong form and weak form.Key points in the theoretical aspects are demonstrated by illustrative examples,and the merits of setting micromechanical FE analysis under the background of a clear theoretical framework are highlighted in the efficient selection of RUCs for Uni Directional(UD)fiber-reinforced composites.
基金Supported by Philosophy and Social Science Research Project of Hubei Education Department in 2022(22D092)Guiding Scientific Research Project of Shiyan Science and Technology Bureau in 2022(22Y34).
文摘[Objectives]This study aimed to investigate the incidence and risk factors associated with SSD in patients following cardiac surgery.[Methods]A total of 378 patients who underwent cardiac surgery in Taihe Hospital were recruited and screened.Diagnosis of delirium was made using evaluation methods and DSM-5 criteria.SSD was defined as the presence of one or more core features of delirium without meeting the full diagnostic criteria.Statistical analysis included independent samples t-test for group comparisons and binary logistic regression analysis to identify independent risk factors for SSD after cardiac surgery.[Results]Among the 378 subjects,112(29.63%)had SSD,28(7.41%)had delirium,and the remaining 238 patients(62.96%)did not present with delirium.Univariate analysis revealed that age,APACHE II score,duration of aortic clamping,length of ICU stay,duration of sedation use,and daily sleep time were significant risk factors for the occurrence of SSD(P<0.05).Logistic regression analysis identified age>70 years old,APACHE II score>20 points,length of ICU stay>5 d,and duration of sedation use>24 h as independent risk factors for SSD after cardiac surgery(P<0.05).A functional model was fitted based on the analysis results of the binary logistic regression model,yielding the equation logit P=1.472X_(1)+2.213X_(2)+3.028X_(3)+1.306X_(4).[Conclusions]Comprehensive clinical assessment is crucial for patients undergoing cardiac surgery,and appropriate preventive measures should be taken for patients with identified risk factors.Close monitoring of the patient s consciousness should be implemented postoperatively,and timely interventions should be conducted.Further research should focus on model validation and optimization.
文摘The changes of structural and functional parameters of aquatic microbial communities in continuous water on campus of Tsinghua University, China are investigated by polyurethane foam unit(PFU) method. The measured compositions of the communities include alga, protozoa, and some metazoa(such as rotifers). The measured indicators of water quality include water temperature, pH value, dissolved oxygen(DO), potassium permanganate index(COD Mn ), total nitrogen(TN), total phosphorus(TP) and chlorophyll-a(Chla). The trophic level, expressed by the trophic level indices(TLIc), is assessed with analytic hierarchy process and principal component analysis(AHP-PCA) method. The changing trends of the structural and functional parameters of aquatic microbial communities, such as Margalef index of diversity(D), Shannon-weaver index of diversity (H), Heterotropy index(HI), number of species when the colonization gets equilibrium(S eq ), colonizing speed constant(G) and time spent when 90 percent of S eq colonized in PFU(T 90% ), are also analyzed. The experimental results showed the succession of aquatic microbial communities along the water flow is consistent with the water quality changes, so the parameters of microbial community can reflect the changes of water quality from the ecological view.
基金Supported by the National Key Research and Development Program of China(2017YFB0602500)National Natural Science Foundation of China(91634203 and91434121)Chinese Academy of Sciences(122111KYSB20150003)
文摘The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for PANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial lim- itations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM (LBGK, MRT) and the numerical schemes for convection terms (WENO, TVD) and production terms (FDM, NEQM) in an explic- itly solved standard k-e model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 107. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes.Then we proposed a new method to accelerate the coupled model of LBM with RANS (implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold accelera- tion relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume (FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM-RANS methods.
文摘Proton-rich nuclei are synthesized via photodisintegration and reverse reactions.To examine this mechanism and reproduce the observed p-nucleus abundances,it is crucial to know the reaction rates and thereby the reaction cross sections of many isotopes.Given that the number of experiments on the reactions in astrophysical energy regions is very rare,the reaction cross sections are determined by theoretical methods whose accuracy should be tested.In this study,given that ^(121)Sb is a stable seed isotope located in the region of medium-mass p-nuclei,we investigated the cross sections and reaction rates of the ^(121)Sb(α,γ)^(125)I reaction using the TALYS computer code with 432 different combinations of input parameters(OMP,LDM,and SFM).The optimal model combinations were determined using the threshold logic unit method.The theoretical reaction cross-sectional results were compared with the experimental results reported in the literature.The reaction rates were determined using the two input parameter sets most compatible with the measurements,and they were compared with the reaction rate databases:STARLIB and REACLIB.
文摘A three-dimensional contact model of 1×7 steel strand was established. Contact point was searched by Splitting-pinball algorithm, and Augmented-Lagrangian algorithm was applied for analysis of contact loads. The exerted tensile loads to the model were analyzed using finite element method. After analyzing calculation results, the laws of steel wire stress distribution in axis direction and in its cross-section were found. Friction coefficients were set as 0.10, 0.11, and 0.12, respec- tively, to obtain the influence law of friction coefficient to steel wire stresses. Research result shows that friction coefficient has significant influence on the shear stress of steel wire. Analyzed the calculation results of steel strand with five different lay pitch multiples and got the influence law of lay pitch multiple to the stresses of steel wire in steel strand. The Von Misses stress of steel wire increases following with the increasing of lay pitches nmltiples, but the increment value is not very prominent. The shear stress of steel wire decreases following the increase of lay pitch multiple, and the changing amplitude is large when lay pitch multiple is small. Finally, carried out a steel strand tensile deformation test and the consistency of test results with the calculation results shows that the selected model is reasonable.
文摘This paper focus on the accuracy enhancement of parallel kinematics machine through kinematics calibration. In the calibration processing, well-structured identification Jacobian matrix construction and end-effector position and orientation measurement are two main difficulties. In this paper, the identification Jacobian matrix is constructed easily by numerical calculation utilizing the unit virtual velocity method. The generalized distance errors model is presented for avoiding measuring the position and orientation directly which is difficult to be measured. At last, a measurement tool is given for acquiring the data points in the calibration processing. Experimental studies confirmed the effectiveness of method. It is also shown in the paper that the proposed approach can be applied to other typed parallel manipulators.
基金The project supported by the National Natural Science Foundation of China
文摘The stress rate integral equations of elastoplasticity are deduced based on Ref. [1] by consistent methods. The point at which the stresses and/or displacements are calculated can be in the body or on the boundary, and in the plastic region or elastic one. The existence of the principal value integral in the plastic region is demonstrated strictly, and the theoretical basis is presented for the paticular solution method by unit initial stress fields. In the present method, programming is easy and general, and the numerical results are excellent.
基金the National Natural Science Foundation of China,the Zhejiang Provincial Natural Science Foundation of China
文摘Uncertainty exists widely in hydrological analysis, and this makes the process of uncertainty assessment very im- portant for making robust decisions. In this study, uncertainty sources in regional rainfall frequency analysis are identified for the first time. The numeral unite spread assessment pedigree (NUSAP) method is introduced and is first employed to quantify qual- itative uncertainty in regional rainfall frequency analysis. A pedigree matrix is particularly designed for regional rainfall frequency analysis, by which the qualitative uncertainty can be quantified. Finally, the qualitative and quantitative uncertainties are com- bined in an uncertainty diagnostic diagram, which makes the uncertainty evaluation results more intuitive. From the integrated diagnostic diagram, it can be determined that the uncertainty caused by the precipitation data is the smallest, and the uncertainty from different grouping methods is the largest. For the downstream sub-region, a generalized extreme value (GEV) distribution is better than a generalized logistic (GLO) distribution; for the south sub-region, a Pearson type III (PE3) distribution is the better choice; and for the north sub-region, GEV is more appropriate.
文摘Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.
基金supported by the National Natural Science Foundation of China with Grant No. 10772040, 50921001 and 50909016The financial support from the Important National Science & Technology Specific Projects of China with Grant No. 2008ZX05026-02 is also appreciated
文摘The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model.
基金financially supported by National key research and development program of China(No.2017YFB0602101,2018YFB0604404)。
文摘700°C double reheat advanced ultra-supercritical power generation technology is one of the most important development directions for the efficient and clean utilization of coal.To solve the great exergy loss problem caused by the high superheat degrees of regenerative steam extractions in 700°C double reheat advanced ultra-supercritical power generation system,two optimization systems are proposed in this paper.System 1 is integrated with the back pressure extraction steam turbine,and system 2 is simultaneously integrated with both the outside steam cooler and back pressure extraction steam turbine.The system performance models are built by the Ebsilon Professional software.The performances of optimized systems are analyzed by the unit consumption method.The off-design performances of optimization systems are analyzed.The results show that:the standard power generation coal consumption rates of optimization systems 1 and 2 are decreased by 1.88 g·(kW·h)^(–1),2.97 g·(kW·h)^(–1)compared with that of the 700°C reference system;the average superheat degrees of regenerative steam extractions of optimized systems 1 and 2 are decreased by 122.2°C,140.7°C(100%turbine heat acceptance condition),respectively.The comparison results also show that the performance of the optimized system 2 is better than those of the optimized system 1 and the 700°C reference system.The power generation standard coal consumption rate and the power generation efficiency of the optimized system 2 are about 232.08 g·(kW·h)^(–1)and 52.96%(100%turbine heat acceptance condition),respectively.