期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
正多边形的最优分割问题 被引量:2
1
作者 朱玉扬 《数学的实践与认识》 CSCD 北大核心 2008年第4期142-148,共7页
记平面边长为1的正m边形为S_m,将S_m剖分成n块:S_(m1),S_(m2),…,S_(mn),这样的剖分称S_m的n剖分,并以T(m,n)表示.以d_(mi)表示区域S_(mi)(i=1,2,…,n)的直径(即区域S_(mi)任意两点之间距离的最大者).记D(m,n)=max{d_(m1),d_(m2),…,d_(... 记平面边长为1的正m边形为S_m,将S_m剖分成n块:S_(m1),S_(m2),…,S_(mn),这样的剖分称S_m的n剖分,并以T(m,n)表示.以d_(mi)表示区域S_(mi)(i=1,2,…,n)的直径(即区域S_(mi)任意两点之间距离的最大者).记D(m,n)=max{d_(m1),d_(m2),…,d_(mn)}及Ψ(m,n)=■{D(m,n)}.本文将估计Ψ(m,n)的上下界.证明Ψ(6,3)=3/2,Ψ(6,4)=3-3^(1/2),Ψ(6.6)=1,Ψ(6,7)=3/2,估计Ψ(6,n)的渐进性.提出几个猜想. 展开更多
关键词 单位正多边形 最优分割 离散极值
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部