In this paper,a strength-constrained unit commitment(UC)model incorporating system strength constraints based on the weighted short-circuit ratio(WSCR)is proposed.This model facilitates the comprehensive assessment of...In this paper,a strength-constrained unit commitment(UC)model incorporating system strength constraints based on the weighted short-circuit ratio(WSCR)is proposed.This model facilitates the comprehensive assessment of area-wide system strength in power systems with high inverter-based resource(IBR)penetration,thereby contributing to the mitigation of weak grid issues.Unlike traditional models,this approach considers the interactions among multiple IBRs.The UC problem is initially formulated as a mixed-integer nonlinear programming(MINLP)model,reflecting WSCR and bus impedance matrix modification constraints.To enhance computational tractability,the model is transformed into a mixed-integer linear programming(MILP)form.The effectiveness of the proposed approach is validated through simulations on the IEEE 5-bus,IEEE 39-bus,and a modified Korean power system,demonstrating the ability of the proposed UC model enhancing system strength compared to the conventional methodologies.展开更多
Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenario...Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment.展开更多
The Unit Commitment Problem(UCP)corresponds to the planning of power generation schedules.The objective of the fuel-based unit commitment problem is to determine the optimal schedule of power generators needed to meet...The Unit Commitment Problem(UCP)corresponds to the planning of power generation schedules.The objective of the fuel-based unit commitment problem is to determine the optimal schedule of power generators needed to meet the power demand,which also minimizes the total operating cost while adhering to different constraints such as power generation limits,unit startup,and shutdown times.In this paper,four different binary variants of the Bald Eagle Search(BES)algorithm,were introduced,which used two variants using S-shape,U-shape,and V-shape transfer functions.In addition,the best-performing variant(using an S-shape transfer function)was selected and improved further by incorporating two binary operators:swap-window and window-mutation.This variation is labeled Improved Binary Bald Eagle Search(IBBESS2).All five variants of the proposed algorithm were successfully adopted to solve the fuel-based unit commitment problem using seven test cases of 4-,10-,20-,40-,60-,80-,and 100-unit.For comparative evaluation,34 comparative methods from existing literature were compared,in which IBBESS2 achieved competitive scores against other optimization techniques.In other words,the proposed IBBESS2 performs better than all other competitors by achieving the best average scores in 20-,40-,60-,80-,and 100-unit problems.Furthermore,IBBESS2 demonstrated quicker convergence to an optimal solution than other algorithms,especially in large-scale unit commitment problems.The Friedman statistical test further validates the results,where the proposed IBBESS2 is ranked the best.In conclusion,the proposed IBBESS2 can be considered a powerful method for solving large-scale UCP and other related problems.展开更多
This paper presents a new method based on an immune-tabu hybrid algorithm to solve the thermal unit commitment (TUC) problem in power plant optimization. The mathematical model of the TUC problem is established by a...This paper presents a new method based on an immune-tabu hybrid algorithm to solve the thermal unit commitment (TUC) problem in power plant optimization. The mathematical model of the TUC problem is established by analyzing the generating units in modem power plants. A novel immune-tabu hybrid algorithm is proposed to solve this complex problem. In the algorithm, the objective function of the TUC problem is considered as an antigen and the solutions are considered as antibodies, which are determined by the affinity computation. The code length of an antibody is shortened by encoding the continuous operating time, and the optimum searching speed is improved. Each feasible individual in the immune algorithm (IA) is used as the initial solution of the tabu search (TS) algorithm after certain generations of IA iteration. As examples, the proposed method has been applied to several thermal unit systems for a period of 24 h. The computation results demonstrate the good global optimum searching performance of the proposed immune-tabu hybrid algorithm. The presented algorithm can also be used to solve other optimization problems in fields such as the chemical industry and the power industry.展开更多
Grid integration of wind power is essential to reduce fossil fuel usage but challenging in view of the intermittent nature of wind.Recently,we developed a hybrid Markovian and interval approach for the unit commitment...Grid integration of wind power is essential to reduce fossil fuel usage but challenging in view of the intermittent nature of wind.Recently,we developed a hybrid Markovian and interval approach for the unit commitment and economic dispatch problem where power generation of conventional units is linked to local wind states to dampen the effects of wind uncertainties.Also,to reduce complexity,extreme and expected states are considered as interval modeling.Although this approach is effective,the fact that major wind farms are often located in remote locations and not accompanied by conventional units leads to conservative results.Furthermore,weights of extreme and expected states in the objective function are difficult to tune,resulting in significant differences between optimization and simulation costs.In this paper,each remote wind farm is paired with a conventional unit to dampen the effects of wind uncertainties without using expensive utility-scaled battery storage,and extra constraints are innovatively established to model pairing.Additionally,proper weights are derived through a novel quadratic fit of cost functions.The problem is solved by using a creative integration of our recent surrogate Lagrangian relaxation and branch-and-cut.Results demonstrate modeling accuracy,computational efficiency,and significant reduction of conservativeness of the previous approach.展开更多
Unit commitment(UC), as a typical optimization problem in electric power system, faces new challenges as energy saving and emission reduction get more and more important in the way to a more environmentally friendly s...Unit commitment(UC), as a typical optimization problem in electric power system, faces new challenges as energy saving and emission reduction get more and more important in the way to a more environmentally friendly society. To meet these challenges, we propose a UC model considering energy saving and emission reduction. By using real-number coding method, swap-window and hill-climbing operators, we present an improved real-coded genetic algorithm(IRGA) for UC. Compared with other algorithms approach to the proposed UC problem, the IRGA solution shows an improvement in effectiveness and computational time.展开更多
Renewable energy sources(RES)such as wind turbines(WT)and solar cells have attracted the attention of power system operators and users alike,thanks to their lack of environmental pollution,independence of fossil fuels...Renewable energy sources(RES)such as wind turbines(WT)and solar cells have attracted the attention of power system operators and users alike,thanks to their lack of environmental pollution,independence of fossil fuels,and meager marginal costs.With the introduction of RES,challenges have faced the unit commitment(UC)problem as a traditional power system optimization problem aiming to minimize total costs by optimally determining units’inputs and outputs,and specifying the optimal generation of each unit.The output power of RES such as WT and solar cells depends on natural factors such as wind speed and solar irradiation that are riddled with uncertainty.As a result,the UC problem in the presence of RES faces uncertainties.The grid consumed load is not always equal to and is randomly different from the predicted values,which also contributes to uncertainty in solving the aforementioned problem.The current study proposes a novel two-stage optimization model with load and wind farm power generation uncertainties for the security-constrained UC to overcome this problem.The new model is adopted to solve the wind-generated power uncertainty,and energy storage systems(ESSs)are included in the problem for further management.The problem is written as an uncertain optimization model which are the stochastic nature with security-constrains which included undispatchable power resources and storage units.To solve the UC programming model,a hybrid honey bee mating and bacterial foraging algorithm is employed to reduce problem complexity and achieve optimal results.展开更多
In this paper, the impact of the wind power generation system on the total cost and profit of the system is studied by using the proposed procedure of binary Sine Cosine (BSC) optimization algorithm with optimal prior...In this paper, the impact of the wind power generation system on the total cost and profit of the system is studied by using the proposed procedure of binary Sine Cosine (BSC) optimization algorithm with optimal priority list (OPL) algorithm. As well, investigate the advantages of system transformation from a regulated system to a deregulated system and the difference in the objective functions of the two systems. The suggested procedure is carried out in two parallel algorithms;The goal of the first algorithm is to reduce the space of searching by using OPL, while the second algorithm adjusts BSC to get the optimal economic dispatch with minimum operation cost of the unit commitment (UCP) problem in the regulated system. But, in the deregulated system, the second algorithm adopts the BSC technique to find the optimal solution to the profit-based unit commitment problem (PBUCP), through the fast of researching the BSC technique. The proposed procedure is applied to IEEE 10-unit test system integrated with the wind generator system. While the second is an actual system in the Egyptian site at Hurghada. The results of this algorithm are compared with previous literature to illustrate the efficiency and capability of this algorithm. Based on the results obtained in the regulated system, the suggested procedure gives better results than the algorithm in previous literature, saves computational efforts, and increases the efficiency of the output power of each unit in the system and lowers the price of kWh. Besides, in the deregulated system the profit is high and the system is more reliable.展开更多
Many studies have considered the solution of Unit Commitment problems for the management of energy networks. In this field, earlier work addressed the problem in determinist cases and in cases dealing with demand unce...Many studies have considered the solution of Unit Commitment problems for the management of energy networks. In this field, earlier work addressed the problem in determinist cases and in cases dealing with demand uncertainties. In this paper, the authors develop a method to deal with uncertainties related to the cost function. Indeed, such uncertainties often occur in energy networks (waste incinerator with a priori unknown waste amounts, cogeneration plant with uncertainty of the sold electricity price...). The corresponding optimization problems are large scale stochastic non-linear mixed integer problems. The developed solution method is a recourse based programming one. The main idea is to consider that amounts of energy to produce can be slightly adapted in real time, whereas the on/off statuses of units have to be decided very early in the management procedure. Results show that the proposed approach remains compatible with existing Unit Commitment programming methods and presents an obvious interest with reasonable computing loads.展开更多
This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) o...This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.展开更多
Joint chance constraints(JCCs)can ensure the consistency and correlation of stochastic variables when participating in decision-making.Sample average approximation(SAA)is the most popular method for solving JCCs in un...Joint chance constraints(JCCs)can ensure the consistency and correlation of stochastic variables when participating in decision-making.Sample average approximation(SAA)is the most popular method for solving JCCs in unit commitment(UC)problems.However,the typical SAA requires large Monte Carlo(MC)samples to ensure the solution accuracy,which results in large-scale mixed-integer programming(MIP)problems.To address this problem,this paper presents the partial sample average approximation(PSAA)to deal with JCCs in UC problems in multi-area power systems with wind power.PSAA partitions the stochastic variables and historical dataset,and the historical dataset is then partitioned into non-sampled and sampled sets.When approximating the expectation of stochastic variables,PSAA replaces the big-M formulation with the cumulative distribution function of the non-sampled set,thus preventing binary variables from being introduced.Finally,PSAA can transform the chance constraints to deterministic constraints with only continuous variables,avoiding the large-scale MIP problem caused by SAA.Simulation results demonstrate that PSAA has significant advantages in solution accuracy and efficiency compared with other existing methods including traditional SAA,SAA with improved big-M,SAA with Latin hypercube sampling(LHS),and the multi-stage robust optimization methods.展开更多
This paper studies the problem of multi-stage robust unit commitment with discrete load shedding.In the day-ahead phase,the on-off status of thermal units is scheduled.During each period of real-time dispatch,the outp...This paper studies the problem of multi-stage robust unit commitment with discrete load shedding.In the day-ahead phase,the on-off status of thermal units is scheduled.During each period of real-time dispatch,the output of thermal units and the action of load shedding are determined,and the discrete choice of load shedding corresponds to the practice of tripping substation outlets.The entire decision-making process is formulated as a multi-stage adaptive robust optimization problem with mixed-integer recourse,whose solution takes three steps.First,we propose and apply partially affine policy,which is optimized ahead of the day and restricts intertemporal dispatch variables as affine functions of previous uncertainty realizations,leaving remaining continuous and binary dispatch variables to be optimized in real time.Second,we demonstrate that the resulting model with partially affine policy can be reformulated as a two-stage robust optimization problem with mixed-integer recourse.Third,we modify the standard nested column-and-constraint generation algorithm to accelerate the inner loops by warm start.The modified algorithm solves the two-stage problem more efficiently.Case studies on the IEEE 118-bus system verify that the proposed partially affine policy outperforms conventional affine policy in terms of optimality and robustness;the modified nested column-and-constraint generation algorithm significantly reduces the total computation time;and the proposed method balances well optimality and efficiency compared with state-of-the-art methods.展开更多
We propose a quasi-deterministic proxy for the net work-constrained stochastic unit commitment(SUC)problem.The proposed proxy can identify very similar commitment deci sions as those obtained by solving the SUC proble...We propose a quasi-deterministic proxy for the net work-constrained stochastic unit commitment(SUC)problem.The proposed proxy can identify very similar commitment deci sions as those obtained by solving the SUC problem with a large scenario set.Its computational performance,though,is close to that of a deterministic unit commitment problem.The proposed proxy has the same formulation as the SUC problem but only includes one or two envelope scenarios,generated based on the original scenario set.The two envelope scenarios capture the maximum and minimum net-load conditions in the original scenario set.We use a systematic method to assess the quality of commitment decisions obtained by the proposed proxy.The considered case study is based on the Illinois 200-bus system.展开更多
Multistage robust unit commitment(MRUC)is an important decision-making problem in power system operations.The affine policy facilitates problem-solving,but it compromises flexibility.This letter proposes a partially a...Multistage robust unit commitment(MRUC)is an important decision-making problem in power system operations.The affine policy facilitates problem-solving,but it compromises flexibility.This letter proposes a partially affine policy for MRU C problem with fast-ramping units;this policy imposes affine relations to coupling variables only and leaves the remaining variables to be optimized in the real-time dispatch.As a result,the real-time flexibility of fast-ramping units is retained.By adopting this approach,MRU C with a partially affine policy becomes a special two-stage adaptive robust optimization problem.Numerical tests verify that the proposed partially affine policy significantly reduces the conservativeness compared with affine policy,improving the dispatch economy and flexibility.展开更多
The quantum hybrid algorithm has recently become a very promising and speedy method for solving larger-scale optimization problems in the noisy intermediate-scale quantum(NISQ)era.The unit commitment(UC)problem is a f...The quantum hybrid algorithm has recently become a very promising and speedy method for solving larger-scale optimization problems in the noisy intermediate-scale quantum(NISQ)era.The unit commitment(UC)problem is a fundamental problem in the field of power systems that aims to satisfy the power balance constraint with minimal cost.In this paper,we focus on the implementation of the UC solution using exact quantum algorithms based on the quantum neural network(QNN).This method is tested with a ten-unit system under the power balance constraint.In order to improve computing precision and reduce network complexity,we propose a knowledge-based partially connected quantum neural network(PCQNN).The results show that exact solutions can be obtained by the improved algorithm and that the depth of the quantum circuit can be reduced simultaneously.展开更多
The increasing penetration of renewable energy sources(RESs)brings great challenges to the frequency security of power systems.The traditional frequency-constrained unit commitment(FCUC)analyzes frequency by simplifyi...The increasing penetration of renewable energy sources(RESs)brings great challenges to the frequency security of power systems.The traditional frequency-constrained unit commitment(FCUC)analyzes frequency by simplifying the average system frequency and ignoring numerous induction machines(IMs)in load,which may underestimate the risk and increase the operational cost.In this paper,we consider a multiarea frequency response(MAFR)model to capture the frequency dynamics in the unit scheduling problem,in which regional frequency security and the inertia of IM load are modeled with high-dimension differential algebraic equations.A multi-area FCUC(MFCUC)is formulated as mixed-integer nonlinear programming(MINLP)on the basis of the MAFR model.Then,we develop a multi-direction decomposition algorithm to solve the MFCUC efficiently.The original MINLP is decomposed into a master problem and subproblems.The subproblems check the nonlinear frequency dynamics and generate linear optimization cuts for the master problem to improve the frequency security in its optimal solution.Case studies on the modified IEEE 39-bus system and IEEE 118-bus system show a great reduction in operational costs.Moreover,simulation results verify the ability of the proposed MAFR model to reflect regional frequency security and the available inertia of IMs in unit scheduling.展开更多
To tackle the energy crisis and climate change,wind farms are being heavily invested in across the world.In China's coastal areas,there are abundant wind resources and numerous offshore wind farms are being constr...To tackle the energy crisis and climate change,wind farms are being heavily invested in across the world.In China's coastal areas,there are abundant wind resources and numerous offshore wind farms are being constructed.The secure operation of these wind farms may suffer from typhoons,and researchers have studied power system operation and resilience enhancement in typhoon scenarios.However,the intricate movement of a typhoon makes it challenging to evaluate its spatial-temporal impacts.Most published papers only consider predefined typhoon trajectories neglecting uncertainties.To address this challenge,this study proposes a stochastic unit commitment model that incorporates high-penetration offshore wind power generation in typhoon scenarios.It adopts a data-driven method to describe the uncertainties of typhoon trajectories and considers the realistic anti-typhoon mode in offshore wind farms.A two-stage stochastic unit commitment model is designed to enhance power system resilience in typhoon scenarios.We formulate the model into a mixed-integer linear programming problem and then solve it based on the computationally-efficient progressive hedging algorithm(PHA).Finally,numerical experiments validate the effectiveness of the proposed method.展开更多
In coastal regions of China,offshore wind farm ex-pansion has spurred extensive research to reduce operational costs in power systems with high penetration of wind power.However,frequent extreme weather conditions suc...In coastal regions of China,offshore wind farm ex-pansion has spurred extensive research to reduce operational costs in power systems with high penetration of wind power.However,frequent extreme weather conditions such as typhoons pose substantial challenges to system stability and security.Pre-vious research has intensively examined the steady-state opera-tions arising from typhoon-induced faults,with a limited em-phasis on the transient frequency dynamics inherent to such faults.To address this challenge,this paper proposes a frequen-cy-constrained unit commitment model that can promote ener-gy utilization and improve resilience.The proposed model ana-lyzes uncertainties stemming from transmission line failures and offshore wind generation through typhoon simulations.Two types of power disturbances resulting from typhoon-in-duced wind farm cutoff and grid islanding events are revealed.In addition,new frequency constraints are defined considering the changes in the topology of the power system.Further,the complex frequency nadir constraints are incorporated into a two-stage stochastic unit commitment model using the piece-wise linearization.Finally,the proposed model is verified by nu-merical experiments,and the results demonstrate that the pro-posed model can effectively enhance system resilience under ty-phoons and improve frequency dynamic characteristics following fault disturbances.展开更多
The paper proposes a stochastic unit commitment(UC)model to realize the low-carbon operation requirement and cope with wind power prediction errors for power systems with intensive wind power and carbon capture power ...The paper proposes a stochastic unit commitment(UC)model to realize the low-carbon operation requirement and cope with wind power prediction errors for power systems with intensive wind power and carbon capture power plant(CCPP).A linear re-dispatch strategy is introduced to compensate the wind power deviation from the spot forecast.The robust optimization technique is employed to obtain a reliable commitment plan against all realizations of wind power within the uncertainty set given by probabilistic forecast.The proposed model is validated with IEEE 39-bus system.The advantages of flexible CCPPs are compared to the normal coal-fueled plants and the impacts of robustness controlling are discussed.展开更多
The increasing integration of variable wind generation has aggravated the imbalance between electricity supply and demand. Power-to-hydrogen(P2H) is a promising solution to balance supply and demand in a variable powe...The increasing integration of variable wind generation has aggravated the imbalance between electricity supply and demand. Power-to-hydrogen(P2H) is a promising solution to balance supply and demand in a variable power grid, in which excess wind power is converted into hydrogen via electrolysis and stored for later use. In this study, an energy hub(EH) with both a P2H facility(electrolyzer) and a gas-to-power(G2P) facility(hydrogen gas turbine) is proposed to accommodate a high penetration of wind power. The EH is modeled and integrated into a security-constrained unit commitment(SCUC) problem, and this optimization problem is solved by a mixed-integer linear programming(MILP) method with the Benders decomposition technique. Case studies are presented to validate the proposed model and elaborate on the technological potential of integrating P2H into a power system with a high level of wind penetration(HWP).展开更多
基金partially supported by Korea Electrotechnology Research Institute(KERI)Primary research program through the National Research Council of Science&Technology(NST)funded by the Ministry of Science and ICT(MSIT)(No.25A01038)partially supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2024-00218377).
文摘In this paper,a strength-constrained unit commitment(UC)model incorporating system strength constraints based on the weighted short-circuit ratio(WSCR)is proposed.This model facilitates the comprehensive assessment of area-wide system strength in power systems with high inverter-based resource(IBR)penetration,thereby contributing to the mitigation of weak grid issues.Unlike traditional models,this approach considers the interactions among multiple IBRs.The UC problem is initially formulated as a mixed-integer nonlinear programming(MINLP)model,reflecting WSCR and bus impedance matrix modification constraints.To enhance computational tractability,the model is transformed into a mixed-integer linear programming(MILP)form.The effectiveness of the proposed approach is validated through simulations on the IEEE 5-bus,IEEE 39-bus,and a modified Korean power system,demonstrating the ability of the proposed UC model enhancing system strength compared to the conventional methodologies.
基金the Science and Technology Project of State Grid Corporation of China,Grant Number 5108-202304065A-1-1-ZN.
文摘Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment.
文摘The Unit Commitment Problem(UCP)corresponds to the planning of power generation schedules.The objective of the fuel-based unit commitment problem is to determine the optimal schedule of power generators needed to meet the power demand,which also minimizes the total operating cost while adhering to different constraints such as power generation limits,unit startup,and shutdown times.In this paper,four different binary variants of the Bald Eagle Search(BES)algorithm,were introduced,which used two variants using S-shape,U-shape,and V-shape transfer functions.In addition,the best-performing variant(using an S-shape transfer function)was selected and improved further by incorporating two binary operators:swap-window and window-mutation.This variation is labeled Improved Binary Bald Eagle Search(IBBESS2).All five variants of the proposed algorithm were successfully adopted to solve the fuel-based unit commitment problem using seven test cases of 4-,10-,20-,40-,60-,80-,and 100-unit.For comparative evaluation,34 comparative methods from existing literature were compared,in which IBBESS2 achieved competitive scores against other optimization techniques.In other words,the proposed IBBESS2 performs better than all other competitors by achieving the best average scores in 20-,40-,60-,80-,and 100-unit problems.Furthermore,IBBESS2 demonstrated quicker convergence to an optimal solution than other algorithms,especially in large-scale unit commitment problems.The Friedman statistical test further validates the results,where the proposed IBBESS2 is ranked the best.In conclusion,the proposed IBBESS2 can be considered a powerful method for solving large-scale UCP and other related problems.
基金Project partially supported by the Lamar Research Enhancement Grant and the National Science Foundation Grant (No. DUE-0737173) to Dr. W. Zhu at Lamar University
文摘This paper presents a new method based on an immune-tabu hybrid algorithm to solve the thermal unit commitment (TUC) problem in power plant optimization. The mathematical model of the TUC problem is established by analyzing the generating units in modem power plants. A novel immune-tabu hybrid algorithm is proposed to solve this complex problem. In the algorithm, the objective function of the TUC problem is considered as an antigen and the solutions are considered as antibodies, which are determined by the affinity computation. The code length of an antibody is shortened by encoding the continuous operating time, and the optimum searching speed is improved. Each feasible individual in the immune algorithm (IA) is used as the initial solution of the tabu search (TS) algorithm after certain generations of IA iteration. As examples, the proposed method has been applied to several thermal unit systems for a period of 24 h. The computation results demonstrate the good global optimum searching performance of the proposed immune-tabu hybrid algorithm. The presented algorithm can also be used to solve other optimization problems in fields such as the chemical industry and the power industry.
基金supported in part by the Project Funded by ABB and U.S.National Science Foundation(ECCS-1509666)
文摘Grid integration of wind power is essential to reduce fossil fuel usage but challenging in view of the intermittent nature of wind.Recently,we developed a hybrid Markovian and interval approach for the unit commitment and economic dispatch problem where power generation of conventional units is linked to local wind states to dampen the effects of wind uncertainties.Also,to reduce complexity,extreme and expected states are considered as interval modeling.Although this approach is effective,the fact that major wind farms are often located in remote locations and not accompanied by conventional units leads to conservative results.Furthermore,weights of extreme and expected states in the objective function are difficult to tune,resulting in significant differences between optimization and simulation costs.In this paper,each remote wind farm is paired with a conventional unit to dampen the effects of wind uncertainties without using expensive utility-scaled battery storage,and extra constraints are innovatively established to model pairing.Additionally,proper weights are derived through a novel quadratic fit of cost functions.The problem is solved by using a creative integration of our recent surrogate Lagrangian relaxation and branch-and-cut.Results demonstrate modeling accuracy,computational efficiency,and significant reduction of conservativeness of the previous approach.
基金the National Natural Science Foundation of China(Nos.61004088 and 61374160)
文摘Unit commitment(UC), as a typical optimization problem in electric power system, faces new challenges as energy saving and emission reduction get more and more important in the way to a more environmentally friendly society. To meet these challenges, we propose a UC model considering energy saving and emission reduction. By using real-number coding method, swap-window and hill-climbing operators, we present an improved real-coded genetic algorithm(IRGA) for UC. Compared with other algorithms approach to the proposed UC problem, the IRGA solution shows an improvement in effectiveness and computational time.
文摘Renewable energy sources(RES)such as wind turbines(WT)and solar cells have attracted the attention of power system operators and users alike,thanks to their lack of environmental pollution,independence of fossil fuels,and meager marginal costs.With the introduction of RES,challenges have faced the unit commitment(UC)problem as a traditional power system optimization problem aiming to minimize total costs by optimally determining units’inputs and outputs,and specifying the optimal generation of each unit.The output power of RES such as WT and solar cells depends on natural factors such as wind speed and solar irradiation that are riddled with uncertainty.As a result,the UC problem in the presence of RES faces uncertainties.The grid consumed load is not always equal to and is randomly different from the predicted values,which also contributes to uncertainty in solving the aforementioned problem.The current study proposes a novel two-stage optimization model with load and wind farm power generation uncertainties for the security-constrained UC to overcome this problem.The new model is adopted to solve the wind-generated power uncertainty,and energy storage systems(ESSs)are included in the problem for further management.The problem is written as an uncertain optimization model which are the stochastic nature with security-constrains which included undispatchable power resources and storage units.To solve the UC programming model,a hybrid honey bee mating and bacterial foraging algorithm is employed to reduce problem complexity and achieve optimal results.
文摘In this paper, the impact of the wind power generation system on the total cost and profit of the system is studied by using the proposed procedure of binary Sine Cosine (BSC) optimization algorithm with optimal priority list (OPL) algorithm. As well, investigate the advantages of system transformation from a regulated system to a deregulated system and the difference in the objective functions of the two systems. The suggested procedure is carried out in two parallel algorithms;The goal of the first algorithm is to reduce the space of searching by using OPL, while the second algorithm adjusts BSC to get the optimal economic dispatch with minimum operation cost of the unit commitment (UCP) problem in the regulated system. But, in the deregulated system, the second algorithm adopts the BSC technique to find the optimal solution to the profit-based unit commitment problem (PBUCP), through the fast of researching the BSC technique. The proposed procedure is applied to IEEE 10-unit test system integrated with the wind generator system. While the second is an actual system in the Egyptian site at Hurghada. The results of this algorithm are compared with previous literature to illustrate the efficiency and capability of this algorithm. Based on the results obtained in the regulated system, the suggested procedure gives better results than the algorithm in previous literature, saves computational efforts, and increases the efficiency of the output power of each unit in the system and lowers the price of kWh. Besides, in the deregulated system the profit is high and the system is more reliable.
文摘Many studies have considered the solution of Unit Commitment problems for the management of energy networks. In this field, earlier work addressed the problem in determinist cases and in cases dealing with demand uncertainties. In this paper, the authors develop a method to deal with uncertainties related to the cost function. Indeed, such uncertainties often occur in energy networks (waste incinerator with a priori unknown waste amounts, cogeneration plant with uncertainty of the sold electricity price...). The corresponding optimization problems are large scale stochastic non-linear mixed integer problems. The developed solution method is a recourse based programming one. The main idea is to consider that amounts of energy to produce can be slightly adapted in real time, whereas the on/off statuses of units have to be decided very early in the management procedure. Results show that the proposed approach remains compatible with existing Unit Commitment programming methods and presents an obvious interest with reasonable computing loads.
文摘This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.
基金supported by the National Natural Science Foundation of China(No.51977042)。
文摘Joint chance constraints(JCCs)can ensure the consistency and correlation of stochastic variables when participating in decision-making.Sample average approximation(SAA)is the most popular method for solving JCCs in unit commitment(UC)problems.However,the typical SAA requires large Monte Carlo(MC)samples to ensure the solution accuracy,which results in large-scale mixed-integer programming(MIP)problems.To address this problem,this paper presents the partial sample average approximation(PSAA)to deal with JCCs in UC problems in multi-area power systems with wind power.PSAA partitions the stochastic variables and historical dataset,and the historical dataset is then partitioned into non-sampled and sampled sets.When approximating the expectation of stochastic variables,PSAA replaces the big-M formulation with the cumulative distribution function of the non-sampled set,thus preventing binary variables from being introduced.Finally,PSAA can transform the chance constraints to deterministic constraints with only continuous variables,avoiding the large-scale MIP problem caused by SAA.Simulation results demonstrate that PSAA has significant advantages in solution accuracy and efficiency compared with other existing methods including traditional SAA,SAA with improved big-M,SAA with Latin hypercube sampling(LHS),and the multi-stage robust optimization methods.
基金supported in part by the Postdoctoral Fellowship Program of the Chinese Postdoctoral Science Foundation(No.GZB20240105)in part by the China Postdoctoral Science Foundation(No.2024M750349)in part by the National Natural Science Foundation of China(No.52407084).
文摘This paper studies the problem of multi-stage robust unit commitment with discrete load shedding.In the day-ahead phase,the on-off status of thermal units is scheduled.During each period of real-time dispatch,the output of thermal units and the action of load shedding are determined,and the discrete choice of load shedding corresponds to the practice of tripping substation outlets.The entire decision-making process is formulated as a multi-stage adaptive robust optimization problem with mixed-integer recourse,whose solution takes three steps.First,we propose and apply partially affine policy,which is optimized ahead of the day and restricts intertemporal dispatch variables as affine functions of previous uncertainty realizations,leaving remaining continuous and binary dispatch variables to be optimized in real time.Second,we demonstrate that the resulting model with partially affine policy can be reformulated as a two-stage robust optimization problem with mixed-integer recourse.Third,we modify the standard nested column-and-constraint generation algorithm to accelerate the inner loops by warm start.The modified algorithm solves the two-stage problem more efficiently.Case studies on the IEEE 118-bus system verify that the proposed partially affine policy outperforms conventional affine policy in terms of optimality and robustness;the modified nested column-and-constraint generation algorithm significantly reduces the total computation time;and the proposed method balances well optimality and efficiency compared with state-of-the-art methods.
基金supported in part by the Advanced Research Projects AgencyEnergy(ARPA-E)of U.S.Department of Energy(No.2171-1618)。
文摘We propose a quasi-deterministic proxy for the net work-constrained stochastic unit commitment(SUC)problem.The proposed proxy can identify very similar commitment deci sions as those obtained by solving the SUC problem with a large scenario set.Its computational performance,though,is close to that of a deterministic unit commitment problem.The proposed proxy has the same formulation as the SUC problem but only includes one or two envelope scenarios,generated based on the original scenario set.The two envelope scenarios capture the maximum and minimum net-load conditions in the original scenario set.We use a systematic method to assess the quality of commitment decisions obtained by the proposed proxy.The considered case study is based on the Illinois 200-bus system.
基金supported in part by the Postdoctoral Fellowship Program of CPSF under Grant Number GZB20240105in part by the China Postdoctoral Science Foundation under Grant Number 2024M750349in part by the National Natural Science Foundation of China under Grant Number 52407084.
文摘Multistage robust unit commitment(MRUC)is an important decision-making problem in power system operations.The affine policy facilitates problem-solving,but it compromises flexibility.This letter proposes a partially affine policy for MRU C problem with fast-ramping units;this policy imposes affine relations to coupling variables only and leaves the remaining variables to be optimized in the real-time dispatch.As a result,the real-time flexibility of fast-ramping units is retained.By adopting this approach,MRU C with a partially affine policy becomes a special two-stage adaptive robust optimization problem.Numerical tests verify that the proposed partially affine policy significantly reduces the conservativeness compared with affine policy,improving the dispatch economy and flexibility.
基金supported in part by the China Postdoctoral Science Foundation(Grant No.2023M740874)。
文摘The quantum hybrid algorithm has recently become a very promising and speedy method for solving larger-scale optimization problems in the noisy intermediate-scale quantum(NISQ)era.The unit commitment(UC)problem is a fundamental problem in the field of power systems that aims to satisfy the power balance constraint with minimal cost.In this paper,we focus on the implementation of the UC solution using exact quantum algorithms based on the quantum neural network(QNN).This method is tested with a ten-unit system under the power balance constraint.In order to improve computing precision and reduce network complexity,we propose a knowledge-based partially connected quantum neural network(PCQNN).The results show that exact solutions can be obtained by the improved algorithm and that the depth of the quantum circuit can be reduced simultaneously.
基金supported by the Science and Technology Project of State Grid Hebei Electric Power Company Limited(No.kj2021-073)。
文摘The increasing penetration of renewable energy sources(RESs)brings great challenges to the frequency security of power systems.The traditional frequency-constrained unit commitment(FCUC)analyzes frequency by simplifying the average system frequency and ignoring numerous induction machines(IMs)in load,which may underestimate the risk and increase the operational cost.In this paper,we consider a multiarea frequency response(MAFR)model to capture the frequency dynamics in the unit scheduling problem,in which regional frequency security and the inertia of IM load are modeled with high-dimension differential algebraic equations.A multi-area FCUC(MFCUC)is formulated as mixed-integer nonlinear programming(MINLP)on the basis of the MAFR model.Then,we develop a multi-direction decomposition algorithm to solve the MFCUC efficiently.The original MINLP is decomposed into a master problem and subproblems.The subproblems check the nonlinear frequency dynamics and generate linear optimization cuts for the master problem to improve the frequency security in its optimal solution.Case studies on the modified IEEE 39-bus system and IEEE 118-bus system show a great reduction in operational costs.Moreover,simulation results verify the ability of the proposed MAFR model to reflect regional frequency security and the available inertia of IMs in unit scheduling.
基金supported in part by the Science and Technology Development Fund,Macao SAR(No.SKL-IOTSC(UM)-2021-2023,0003/2020/AKP).
文摘To tackle the energy crisis and climate change,wind farms are being heavily invested in across the world.In China's coastal areas,there are abundant wind resources and numerous offshore wind farms are being constructed.The secure operation of these wind farms may suffer from typhoons,and researchers have studied power system operation and resilience enhancement in typhoon scenarios.However,the intricate movement of a typhoon makes it challenging to evaluate its spatial-temporal impacts.Most published papers only consider predefined typhoon trajectories neglecting uncertainties.To address this challenge,this study proposes a stochastic unit commitment model that incorporates high-penetration offshore wind power generation in typhoon scenarios.It adopts a data-driven method to describe the uncertainties of typhoon trajectories and considers the realistic anti-typhoon mode in offshore wind farms.A two-stage stochastic unit commitment model is designed to enhance power system resilience in typhoon scenarios.We formulate the model into a mixed-integer linear programming problem and then solve it based on the computationally-efficient progressive hedging algorithm(PHA).Finally,numerical experiments validate the effectiveness of the proposed method.
基金This paper was supported by the Science and Technology Development Fund,MacauSAR(No.001/2024/SKL).
文摘In coastal regions of China,offshore wind farm ex-pansion has spurred extensive research to reduce operational costs in power systems with high penetration of wind power.However,frequent extreme weather conditions such as typhoons pose substantial challenges to system stability and security.Pre-vious research has intensively examined the steady-state opera-tions arising from typhoon-induced faults,with a limited em-phasis on the transient frequency dynamics inherent to such faults.To address this challenge,this paper proposes a frequen-cy-constrained unit commitment model that can promote ener-gy utilization and improve resilience.The proposed model ana-lyzes uncertainties stemming from transmission line failures and offshore wind generation through typhoon simulations.Two types of power disturbances resulting from typhoon-in-duced wind farm cutoff and grid islanding events are revealed.In addition,new frequency constraints are defined considering the changes in the topology of the power system.Further,the complex frequency nadir constraints are incorporated into a two-stage stochastic unit commitment model using the piece-wise linearization.Finally,the proposed model is verified by nu-merical experiments,and the results demonstrate that the pro-posed model can effectively enhance system resilience under ty-phoons and improve frequency dynamic characteristics following fault disturbances.
基金This work was supported by the National Basic Research Program of China(No.2012CB215106)State Grid Corporation of China(No.52150014006W).
文摘The paper proposes a stochastic unit commitment(UC)model to realize the low-carbon operation requirement and cope with wind power prediction errors for power systems with intensive wind power and carbon capture power plant(CCPP).A linear re-dispatch strategy is introduced to compensate the wind power deviation from the spot forecast.The robust optimization technique is employed to obtain a reliable commitment plan against all realizations of wind power within the uncertainty set given by probabilistic forecast.The proposed model is validated with IEEE 39-bus system.The advantages of flexible CCPPs are compared to the normal coal-fueled plants and the impacts of robustness controlling are discussed.
基金supported by National Natural Science Foundation of China(No.51377035)NSFC-RCUK_EPSRC(No.51361130153)
文摘The increasing integration of variable wind generation has aggravated the imbalance between electricity supply and demand. Power-to-hydrogen(P2H) is a promising solution to balance supply and demand in a variable power grid, in which excess wind power is converted into hydrogen via electrolysis and stored for later use. In this study, an energy hub(EH) with both a P2H facility(electrolyzer) and a gas-to-power(G2P) facility(hydrogen gas turbine) is proposed to accommodate a high penetration of wind power. The EH is modeled and integrated into a security-constrained unit commitment(SCUC) problem, and this optimization problem is solved by a mixed-integer linear programming(MILP) method with the Benders decomposition technique. Case studies are presented to validate the proposed model and elaborate on the technological potential of integrating P2H into a power system with a high level of wind penetration(HWP).