期刊文献+
共找到4,235篇文章
< 1 2 212 >
每页显示 20 50 100
New Algorithm for Binary Connected-Component Labeling Based on Run-Length Encoding and Union-Find Sets 被引量:3
1
作者 王洪涛 罗长洲 +2 位作者 王渝 郭贺 赵述芳 《Journal of Beijing Institute of Technology》 EI CAS 2010年第1期71-75,共5页
Based on detailed analysis of advantages and disadvantages of the existing connected-component labeling (CCL) algorithm,a new algorithm for binary connected components labeling based on run-length encoding (RLE) a... Based on detailed analysis of advantages and disadvantages of the existing connected-component labeling (CCL) algorithm,a new algorithm for binary connected components labeling based on run-length encoding (RLE) and union-find sets has been put forward.The new algorithm uses RLE as the basic processing unit,converts the label merging of connected RLE into sets grouping in accordance with equivalence relation,and uses the union-find sets which is the realization method of sets grouping to solve the label merging of connected RLE.And the label merging procedure has been optimized:the union operation has been modified by adding the "weighted rule" to avoid getting a degenerated-tree,and the "path compression" has been adopted when implementing the find operation,then the time complexity of label merging is O(nα(n)).The experiments show that the new algorithm can label the connected components of any shapes very quickly and exactly,save more memory,and facilitate the subsequent image analysis. 展开更多
关键词 binary images connected-component labeling run-length encoding union-find sets
在线阅读 下载PDF
Progressive quantum algorithm for maximum independent set with quantum alternating operator ansatz
2
作者 Xiao-Hui Ni Ling-Xiao Li +3 位作者 Yan-Qi Song Zheng-Ping Jin Su-Juan Qin Fei Gao 《Chinese Physics B》 2025年第7期75-87,共13页
The quantum alternating operator ansatz algorithm(QAOA+)is widely used for constrained combinatorial optimization problems(CCOPs)due to its ability to construct feasible solution spaces.In this paper,we propose a prog... The quantum alternating operator ansatz algorithm(QAOA+)is widely used for constrained combinatorial optimization problems(CCOPs)due to its ability to construct feasible solution spaces.In this paper,we propose a progressive quantum algorithm(PQA)to reduce qubit requirements for QAOA+in solving the maximum independent set(MIS)problem.PQA iteratively constructs a subgraph likely to include the MIS solution of the original graph and solves the problem on it to approximate the global solution.Specifically,PQA starts with a small-scale subgraph and progressively expands its graph size utilizing heuristic expansion strategies.After each expansion,PQA solves the MIS problem on the newly generated subgraph using QAOA+.In each run,PQA repeats the expansion and solving process until a predefined stopping condition is reached.Simulation results show that PQA achieves an approximation ratio of 0.95 using only 5.57%(2.17%)of the qubits and 17.59%(6.43%)of the runtime compared with directly solving the original problem with QAOA+on Erd?s-Rényi(3-regular)graphs,highlighting the efficiency and scalability of PQA. 展开更多
关键词 quantum alternating operator ansatz algorithm(QAOA+) constrained combinatorial optimization problems(CCOPs) maximum independent set(MIS) feasible space
原文传递
Flight Trajectory Option Set Generation Based on Clustering Algorithms
3
作者 WANG Shijin SUN Min +1 位作者 LI Yinglin YANG Baotian 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第6期767-788,共22页
Addressing the issue that flight plans between Chinese city pairs typically rely on a single route,lacking alternative paths and posing challenges in responding to emergencies,this study employs the“quantile-inflecti... Addressing the issue that flight plans between Chinese city pairs typically rely on a single route,lacking alternative paths and posing challenges in responding to emergencies,this study employs the“quantile-inflection point method”to analyze specific deviation trajectories,determine deviation thresholds,and identify commonly used deviation paths.By combining multiple similarity metrics,including Euclidean distance,Hausdorff distance,and sector edit distance,with the density-based spatial clustering of applications with noise(DBSCAN)algorithm,the study clusters deviation trajectories to construct a multi-option trajectory set for city pairs.A case study of 23578 flight trajectories between the Guangzhou airport cluster and the Shanghai airport cluster demonstrates the effectiveness of the proposed framework.Experimental results show that sector edit distance achieves superior clustering performance compared to Euclidean and Hausdorff distances,with higher silhouette coefficients and lower Davies⁃Bouldin indices,ensuring better intra-cluster compactness and inter-cluster separation.Based on clustering results,19 representative trajectory options are identified,covering both nominal and deviation paths,which significantly enhance route diversity and reflect actual flight practices.This provides a practical basis for optimizing flight paths and scheduling,enhancing the flexibility of route selection for flights between city pairs. 展开更多
关键词 flight trajectory clustering trajectory option set sector edit distance density-based spatial clustering of applications with noise(DBSCAN)algorithm deviation trajectories
在线阅读 下载PDF
A Hybrid Genetic Algorithm for Reduct of Attributes in Decision System Based on Rough Set Theory 被引量:6
4
作者 Dai Jian\|hua 1,2 , Li Yuan\|xiang 1,2 ,Liu Qun 3 1. State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China 2. School of Computer, Wuhan University, Wuhan 430072, Hubei, China 3. School of Computer Science, 《Wuhan University Journal of Natural Sciences》 CAS 2002年第3期285-289,共5页
Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into g... Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into genetic algorithm, we proposed a heuristic genetic algorithm. In the genetic algorithm, we constructed a new operator to maintaining the classification ability. The experiment shows that our algorithm is efficient and effective for minimal reduct, even for the special example that the simple heuristic algorithm can’t get the right result. 展开更多
关键词 rough set REDUCTION genetic algorithm heuristic algorithm
在线阅读 下载PDF
A Correntropy-based Affine Iterative Closest Point Algorithm for Robust Point Set Registration 被引量:7
5
作者 Hongchen Chen Xie Zhang +2 位作者 Shaoyi Du Zongze Wu Nanning Zheng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第4期981-991,共11页
The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this prob... The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments. 展开更多
关键词 AFFINE ITERATIVE closest point(ICP)algorithm correntropy-based ROBUST POINT set REGISTRATION
在线阅读 下载PDF
Immune algorithm for discretization of decision systems in rough set theory 被引量:4
6
作者 JIA Ping DAI Jian-hua CHEN Wei-dong PAN Yun-he ZHU Miao-liang 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期602-606,共5页
Rough set theory plays an important role in knowledge discovery, but cannot deal with continuous attributes, thus discretization is a problem which we cannot neglect. And discretization of decision systems in rough se... Rough set theory plays an important role in knowledge discovery, but cannot deal with continuous attributes, thus discretization is a problem which we cannot neglect. And discretization of decision systems in rough set theory has some particular characteristics. Consistency must be satisfied and cuts for discretization is expected to be as small as possible. Consistent and minimal discretization problem is NP-complete. In this paper, an immune algorithm for the problem is proposed. The correctness and effectiveness were shown in experiments. The discretization method presented in this paper can also be used as a data pre- treating step for other symbolic knowledge discovery or machine learning methods other than rough set theory. 展开更多
关键词 Rough sets DISCRETIZATION Immune algorithm Decision system
在线阅读 下载PDF
Unsupervised Quick Reduct Algorithm Using Rough Set Theory 被引量:2
7
作者 C. Velayutham K. Thangavel 《Journal of Electronic Science and Technology》 CAS 2011年第3期193-201,共9页
Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features ma... Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. The conventional supervised FS methods evaluate various feature subsets using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. In this paper, we propose a new unsupervised quick reduct (QR) algorithm using rough set theory. The quality of the reduced data is measured by the classification performance and it is evaluated using WEKA classifier tool. The method is compared with existing supervised methods and the result demonstrates the efficiency of the proposed algorithm. 展开更多
关键词 Index Terms--Data mining rough set supervised and unsupervised feature selection unsupervised quick reduct algorithm.
在线阅读 下载PDF
Prediction method of rock burst proneness based on rough set and genetic algorithm 被引量:3
8
作者 YU Huai-chang LIU Hai-ning +1 位作者 LU Xue-song LIU Han-dong 《Journal of Coal Science & Engineering(China)》 2009年第4期367-373,共7页
A new method based on rough set theory and genetic algorithm was proposedto predict the rock burst proneness. Nine influencing factors were first selected, and then,the decision table was set up. Attributes were reduc... A new method based on rough set theory and genetic algorithm was proposedto predict the rock burst proneness. Nine influencing factors were first selected, and then,the decision table was set up. Attributes were reduced by genetic algorithm. Rough setwas used to extract the simplified decision rules of rock burst proneness. Taking the practical engineering for example, the rock burst proneness was evaluated and predicted bydecision rules. Comparing the prediction results with the actual results, it shows that theproposed method is feasible and effective. 展开更多
关键词 rock burst proneness rough set genetic algorithm RULE
在线阅读 下载PDF
Heuristic Genetic Algorithm for Discretization of Continuous Attributes in Rough Set Theory 被引量:2
9
作者 CAO Yun-feng WANG Yao-cai WANG Jun-wei 《Journal of China University of Mining and Technology》 EI 2006年第2期147-150,155,共5页
Discretization based on rough set theory aims to seek the possible minimum number of the cut set without weakening the indiscemibility of the original decision system. Optimization of discretization is an NP-complete ... Discretization based on rough set theory aims to seek the possible minimum number of the cut set without weakening the indiscemibility of the original decision system. Optimization of discretization is an NP-complete problem and the genetic algorithm is an appropriate method to solve it. In order to achieve optimal discretization, first the choice of the initial set of cut set is discussed, because a good initial cut set can enhance the efficiency and quality of the follow-up algorithm. Second, an effective heuristic genetic algorithm for discretization of continuous attributes of the decision table is proposed, which takes the significance of cut dots as heuristic information and introduces a novel operator to maintain the indiscernibility of the original decision system and enhance the local research ability of the algorithm. So the algorithm converges quickly and has global optimizing ability. Finally, the effectiveness of the algorithm is validated through experiment. 展开更多
关键词 rough set DISCRETIZATION genetic algorithm
在线阅读 下载PDF
A neurofuzzy system based on rough set theory and genetic algorithm 被引量:1
10
作者 罗健旭 邵惠鹤 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期278-282,共5页
This paper presents a hybrid soft computing modeling approach for a neurofuzzy system based on rough set theory and the genetic algorithms (NFRSGA). The fundamental problem of a neurofuzzy system is that when the inpu... This paper presents a hybrid soft computing modeling approach for a neurofuzzy system based on rough set theory and the genetic algorithms (NFRSGA). The fundamental problem of a neurofuzzy system is that when the input dimension increases, the fuzzy rule base increases exponentially. This leads to a huge infrastructure network which results in slow convergence. To solve this problem, rough set theory is used to obtain the reductive rules, which are used as fuzzy rules of the fuzzy system. The number of rules decrease, and each rule does not need all the conditional attribute values. This results in a reduced, or not fully connected, neural network. The structure of the neural network is relatively small and thus the weights to be trained decrease. The genetic algorithm is used to search the optimal discretization of the continuous attributes. The NFRSGA approach has been applied in the practical application of building a soft sensor model for estimating the freezing point of the light diesel fuel in a Fluid Catalytic Cracking Unit (FCCU), and satisfying results are obtained. 展开更多
关键词 soft computing neurofuzzy system rough set genetic algorithm
在线阅读 下载PDF
Binary Fruit Fly Swarm Algorithms for the Set Covering Problem 被引量:1
11
作者 Broderick Crawford Ricardo Soto +7 位作者 Hanns de la Fuente Mella Claudio Elortegui Wenceslao Palma Claudio Torres-Rojas Claudia Vasconcellos-Gaete Marcelo Becerra Javier Pena Sanjay Misra 《Computers, Materials & Continua》 SCIE EI 2022年第6期4295-4318,共24页
Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to so... Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to solve them successfully.Thus,a well-known strategy consists in the use of algorithms based on discrete swarms transformed to perform in binary environments.Following the No Free Lunch theorem,we are interested in testing the performance of the Fruit Fly Algorithm,this is a bio-inspired metaheuristic for deducing global optimization in continuous spaces,based on the foraging behavior of the fruit fly,which usually has much better sensory perception of smell and vision than any other species.On the other hand,the Set Coverage Problem is a well-known NP-hard problem with many practical applications,including production line balancing,utility installation,and crew scheduling in railroad and mass transit companies.In this paper,we propose different binarization methods for the Fruit Fly Algorithm,using Sshaped and V-shaped transfer functions and various discretization methods to make the algorithm work in a binary search space.We are motivated with this approach,because in this way we can deliver to future researchers interested in this area,a way to be able to work with continuous metaheuristics in binary domains.This new approach was tested on benchmark instances of the Set Coverage Problem and the computational results show that the proposed algorithm is robust enough to produce good results with low computational cost. 展开更多
关键词 set covering problem fruit fly swarm algorithm metaheuristics binarization methods combinatorial optimization problem
在线阅读 下载PDF
A NEW UNSUPERVISED CLASSIFICATION ALGORITHM FOR POLARIMETRIC SAR IMAGES BASED ON FUZZY SET THEORY 被引量:2
12
作者 Fu Yusheng Xie Yan Pi Yiming Hou Yinming 《Journal of Electronics(China)》 2006年第4期598-601,共4页
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o... In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data. 展开更多
关键词 Radar polarimetry Synthetic Aperture Radar (SAR) Fuzzy set theory Unsupervised classification Image quantization Image enhancement Fuzzy C-Means (FCM) clustering algorithm Membership function
在线阅读 下载PDF
Active set truncated-Newton algorithm for simultaneous optimization of distillation column 被引量:1
13
作者 梁昔明 《Journal of Central South University of Technology》 2005年第1期93-96,共4页
An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are mad... An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are made for the various large-scale problems of varying size. The comparison results between ASTNA and the subspace limited memory quasi-Newton algorithm and between the modified augmented Lagrange multiplier methods combined with ASTNA and the modified barrier function method show the stability and effectiveness of ASTNA for simultaneous optimization of distillation column. 展开更多
关键词 simultaneous optimization of distillation column active set truncated-Newton algorithm modified augmented Lagrange multiplier methods numerical experiment
在线阅读 下载PDF
Bi-extrapolated subgradient projection algorithm for solving multiple-sets split feasibility problem 被引量:3
14
作者 DANG Ya-zheng GAO Yan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第3期283-294,共12页
This paper deals with a bi-extrapolated subgradient projection algorithm by intro- ducing two extrapolated factors in the iterative step to solve the multiple-sets split feasibility problem. The strategy is intend to ... This paper deals with a bi-extrapolated subgradient projection algorithm by intro- ducing two extrapolated factors in the iterative step to solve the multiple-sets split feasibility problem. The strategy is intend to improve the convergence. And its convergence is proved un- der some suitable conditions. Numerical results illustrate that the bi-extrapolated subgradient projection algorithm converges more quickly than the existing algorithms. 展开更多
关键词 Multiple-sets split feasibility problem SUBGRADIENT accelerated iterative algorithm convergence.
在线阅读 下载PDF
A Modified Genetic Algorithm for Maximum Independent Set Problems
15
作者 刘兴钊 坂本明雄 岛本隆 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1999年第2期5-10,共6页
genetic algorithm is proposed for maximum independent set problems. A specially designed mutation operato is adopted to search the solution space more efficienily, where adjacen relation of a graph is inte-grated. The... genetic algorithm is proposed for maximum independent set problems. A specially designed mutation operato is adopted to search the solution space more efficienily, where adjacen relation of a graph is inte-grated. The DIMACS benchmark graphs are used to test our algorithm, and the results show that the algorithm outper-forms our previous version. Moreover two new low bounds are found for graphs in DIMACS. 展开更多
关键词 Cenetic algorithm MAXIMUM INDEPENDENT set PROBLEM MAXIMUM CLIQUE PROBLEM HEURISTIC algorithm
在线阅读 下载PDF
Efficient Information Set Decoding Based on Genetic Algorithms
16
作者 Ahmed Azouaoui Idriss Chana Mostafa Belkasmi 《International Journal of Communications, Network and System Sciences》 2012年第7期423-429,共7页
In this paper, we describe a hard-decision decoding technique based on Genetic Algorithms (HDGA), which is applicable to the general case of error correcting codes where the only known structure is given by the genera... In this paper, we describe a hard-decision decoding technique based on Genetic Algorithms (HDGA), which is applicable to the general case of error correcting codes where the only known structure is given by the generating matrix G. Then we present a new soft-decision decoding based on HDGA and the Chase algorithm (SDGA). The performance of some binary and non-binary Linear Block Codes are given for HDGA and SDGA over Gaussian and Rayleigh channels. The performances show that the HDGA decoder has the same performances as the Berlekamp-Massey Algorithm (BMA) in various transmission channels. On the other hand, the performances of SDGA are equivalent to soft-decision decoding using Chase algorithm and BMA (Chase-BMA). The complexity of decoders proposed is also discussed and compared to those of other decoders. 展开更多
关键词 GENETIC algorithms (GA) ERROR CORRECTING CODES RS CODES Information set DECODING CHASE algorithm
在线阅读 下载PDF
Local Search-Inspired Rough Sets for Improving Multiobjective Evolutionary Algorithm
17
作者 Ahmed A. EL-Sawy Mohamed A. Hussein +1 位作者 El-Sayed Mohamed Zaki Abd Allah A. Mousa 《Applied Mathematics》 2014年第13期1993-2007,共15页
In this paper we present a new optimization algorithm, and the proposed algorithm operates in two phases. In the first one, multiobjective version of genetic algorithm is used as search engine in order to generate app... In this paper we present a new optimization algorithm, and the proposed algorithm operates in two phases. In the first one, multiobjective version of genetic algorithm is used as search engine in order to generate approximate true Pareto front. This algorithm is based on concept of co-evolution and repair algorithm for handling nonlinear constraints. Also it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept e-dominance. Then, in the second stage, rough set theory is adopted as local search engine in order to improve the spread of the solutions found so far. The results, provided by the proposed algorithm for benchmark problems, are promising when compared with exiting well-known algorithms. Also, our results suggest that our algorithm is better applicable for solving real-world application problems. 展开更多
关键词 MULTIOBJECTIVE Optimization GENETIC algorithmS ROUGH setS Theory
在线阅读 下载PDF
Neural network fault diagnosis method optimization with rough set and genetic algorithms
18
作者 孙红岩 《Journal of Chongqing University》 CAS 2006年第2期94-97,共4页
Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. Th... Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly. 展开更多
关键词 rough sets genetic algorithm BP algorithms artificial neural network encoding rule
在线阅读 下载PDF
Quantum algorithm for minimum dominating set problem with circuit design
19
作者 张皓颖 王绍轩 +2 位作者 刘新建 沈颖童 王玉坤 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期178-188,共11页
Using quantum algorithms to solve various problems has attracted widespread attention with the development of quantum computing.Researchers are particularly interested in using the acceleration properties of quantum a... Using quantum algorithms to solve various problems has attracted widespread attention with the development of quantum computing.Researchers are particularly interested in using the acceleration properties of quantum algorithms to solve NP-complete problems.This paper focuses on the well-known NP-complete problem of finding the minimum dominating set in undirected graphs.To expedite the search process,a quantum algorithm employing Grover’s search is proposed.However,a challenge arises from the unknown number of solutions for the minimum dominating set,rendering direct usage of original Grover’s search impossible.Thus,a swap test method is introduced to ascertain the number of iterations required.The oracle,diffusion operators,and swap test are designed with achievable quantum gates.The query complexity is O(1.414^(n))and the space complexity is O(n).To validate the proposed approach,qiskit software package is employed to simulate the quantum circuit,yielding the anticipated results. 展开更多
关键词 quantum algorithm circuit design minimum dominating set
原文传递
A new escape time algorithm of constructing Julia set
20
作者 袁杰 Li Xiali +1 位作者 Hou Zhiling Cao Maosheng 《High Technology Letters》 EI CAS 2007年第2期194-197,共4页
Escape time algorithm is an effective theoretical algorithm of constructing fractal graphics. The key of this algorithm lies in the construction of escape time function. A new escape time function is presented based o... Escape time algorithm is an effective theoretical algorithm of constructing fractal graphics. The key of this algorithm lies in the construction of escape time function. A new escape time function is presented based on the research of escape time algorithm. An accelerated escape time algorithm is carried out in this paper. The experiments have demonstrated that the new algorithm is not only as precise as the old, but also faster when it is used to construct Julia set. 展开更多
关键词 FRACTAL escape time algorithm escape time function Julia set
在线阅读 下载PDF
上一页 1 2 212 下一页 到第
使用帮助 返回顶部