对珠子参中皂苷类成分进行定性鉴别分析,建立珠子参皂苷类多成分含量测定方法。采用超高效液相色谱-飞行时间质谱(UPLC-Q-TOF-MS/MS)技术对珠子参进行正、负离子模式扫描,使用UNIFI天然产物信息平台对珠子参所含的化学成分进行定性鉴别...对珠子参中皂苷类成分进行定性鉴别分析,建立珠子参皂苷类多成分含量测定方法。采用超高效液相色谱-飞行时间质谱(UPLC-Q-TOF-MS/MS)技术对珠子参进行正、负离子模式扫描,使用UNIFI天然产物信息平台对珠子参所含的化学成分进行定性鉴别分析;以0.1%磷酸水-乙腈溶液为流动相进行梯度洗脱,柱温30℃,流速0.3 mL/min,进行珠子参皂苷类多成分含量测定。珠子参中共鉴定出39个化学成分,包括37个皂苷类化合物和2个皂苷母核,并总结了皂苷类化合物的裂解规律,建立了UPLC同时测定珠子参中人参皂苷Rb1、人参皂苷Ro、人参皂苷Rb3、竹节参皂苷IV、竹节参皂苷IVa、人参皂苷Rd、姜状三七皂苷R1和金盏花苷E的多指标含量测定方法,该方法中8个待测成分在检测质量浓度范围内线性关系良好,精密度、重复性、稳定性的相对标准偏差(relative standard deviation,RSD)均小于3.0%,样品中人参皂苷Rb1、人参皂苷Ro、人参皂苷Rb3、竹节参皂苷IV、竹节参皂苷IVa、人参皂苷Rd、姜状三七皂苷R1和金盏花苷E的平均加样回收率分别为102.4%、103.1%、97.97%、99.42%、102.7%、102.1%、95.23%、100.5%,RSD分别为1.0%、0.98%、0.81%、2.3%、0.81%、1.9%、0.96%、1.8%。该研究建立的方法可快速、准确地对珠子参中的皂苷类成分进行定性及定量分析。展开更多
If the singularity of the cosmic Big Bang is taken as the origin of the reference coordinate system,the surrounding vacuum in the initial moments of it would exhibit radially-outward right-handed spiral motion at ligh...If the singularity of the cosmic Big Bang is taken as the origin of the reference coordinate system,the surrounding vacuum in the initial moments of it would exhibit radially-outward right-handed spiral motion at light speed.Based on this spatial motion hypothesis,we derive a unified field equation and a set of Maxwell’s equations for vacuum SWs(Scalar Waves)generating a huge spiral force field that drives the energy to spiral inwardly and distort,leading to the formation of mass.Furthermore,they also uncover that mass is fundamentally an ultimate expression of energy,manifesting as the result of spiral motion of space at light speed.And then,we indirectly validate the theory that coherent light waves’collision generate SWs and subsequently mass through the experiment verifying the Breit-Wheeler process.The establishment of our theory offers a new analytical tool for the exploration of mass origin,the cosmic Big Bang,unified field theories.展开更多
Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of th...Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity.展开更多
Downloads of national standards exceed 10 million times in the first half of 2025 In response to social needs,State Administration for Market Regulation(SAMR)had steadily promoted the full-text disclosure and free dow...Downloads of national standards exceed 10 million times in the first half of 2025 In response to social needs,State Administration for Market Regulation(SAMR)had steadily promoted the full-text disclosure and free download of over 30,000 national standards that do not adopt international standards since the beginning of this year.In the first half of 2025,downloads exceeded 10 million times,providing strong support for the construction of a unified national market.Social groups accessing national standards for free increased significantly.In the first half of this year,the average monthly downloads of national standards surged tenfold from 190,000 times last year to 2.03 million times.Online reading reached nearly 15 million times,and page views hit 89 million times.The disclosure of national standards for free has effectively broken information barriers in standards,ensuring equal rights for business entities to read and download national standards.展开更多
Vehicle recognition plays a vital role in intelligent transportation systems,law enforcement,access control,and security operations—domains that are becoming increasingly dynamic and complex.Despite advancements,most...Vehicle recognition plays a vital role in intelligent transportation systems,law enforcement,access control,and security operations—domains that are becoming increasingly dynamic and complex.Despite advancements,most existing solutions remain siloed,addressing individual tasks such as vehicle make and model recognition(VMMR),automatic number plate recognition(ANPR),and color classification separately.This fragmented approach limits real-world efficiency,leading to slower processing,reduced accuracy,and increased operational costs,particularly in traffic monitoring and surveillance scenarios.To address these limitations,we present a unified framework that consolidates all three recognition tasks into a single,lightweight system.The framework utilizes MobileNetV2 for efficient VMMR,YOLO(You Only Look Once)for accurate license plate detection,and histogram-based clustering in the HSV color space for precise color identification.Rather than optimizing each module in isolation,our approach emphasizes tight integration,enabling improved performance and reliability.The system also features adaptive image calibration and robust algorithmic enhancements to ensure consistent results under varying environmental conditions.Experimental evaluations demonstrate that the proposedmodel achieves a combined accuracy of 93.3%,outperforming traditional methods and offering practical scalability for deployment in real-world transportation infrastructures.展开更多
In March 2025,prominent Chinese automaker NIO(Shanghai,China),the global leader in electric vehicle(EV)battery swapping,and Contemporary Amperex Technology Co.,Ltd.(CATL)(Nindge,China),the world’s biggest manufacture...In March 2025,prominent Chinese automaker NIO(Shanghai,China),the global leader in electric vehicle(EV)battery swapping,and Contemporary Amperex Technology Co.,Ltd.(CATL)(Nindge,China),the world’s biggest manufacturer of EV batteries,announced a strategic partnership to build the world’s largest battery swapping network,while also promoting unified standards and technologies[1].Just weeks later,CATL announced another partnership,this one with Chinese state-owned oil giant Sinopec(Beijing,China)to build 10000 new battery swapping stations in China,at least 500 in 2025[2].展开更多
As important natural and pharmaceutical motifs,the catalytic construction of structurally diverse 3,3-disubstituted oxindoles often requires elaborate synthetic efforts on optimizations.Herein,we developed a simple an...As important natural and pharmaceutical motifs,the catalytic construction of structurally diverse 3,3-disubstituted oxindoles often requires elaborate synthetic efforts on optimizations.Herein,we developed a simple and divergent approach for constructing reverse-prenylated and prenylated oxindoles launched by Ni catalysis with bulk chemical isoprene.Using C3-unsubstituted oxindoles as starting materials,mono reverse-prenylation was demonstrated in high chemo-and regioselectivities facilitated by the combination of Ni(0)and monodentate phosphine ligand.Using the obtained reverse-prenylated oxindoles as versatile synthon,substitutions at the pseudobenzylic position with various electrophiles created vicinal quaternary centers in a concise way.With the help of additives(PPh3 and NaH),air could be directly used as green oxidant to construct prenylated and reverse-prenylatedα-hydroxy-oxindoles divergently from the same substrates.In situ esterification of prenylatedα-hydroxy-oxindoles allowed subsequent Friedel-Crafts substitutions with diverse nucleophiles to deliver prenyl substituted dimeric or spiro-oxindoles.This protocol provides a divergent synthetic approach for the construction of highly functionalized 3,3-disubstituted oxindoles,which have been otherwise difficult to access in a unified approach.展开更多
Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-sof...Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-softening (SS) rock masses. This study proposes a novel analytical model to determine the GRCs of SS rock masses, incorporating ground reinforcement and intermediate principal stress (IPS). The SS constitutive model captures the progressive post- peak failure, while the elastic-brittle model simulates reinforced rock masses. Nine combined states are innovatively investigated to analyze plastic zone development in natural and reinforced regions. Each region is analyzed separately, and coupled through boundary conditions at interface. Comparison with three types of existing models indicates that these models overestimate reinforcement effects. The deformation prediction errors of single geological material models may exceed 75%. Furthermore, neglecting softening and residual zones in natural regions could lead to errors over 50%. Considering the IPS can effectively utilize the rock strength to reduce tunnel deformation by at least 30%, thereby saving on reinforcement and support costs. The computational results show a satisfactory agreement with the monitoring data from a model test and two tunnel projects. The proposed model may offer valuable insights into the design and construction of reinforced tunnel engineering.展开更多
The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified ...The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.展开更多
This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to c...This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to consider the different initial rock fabrics.The long-term relative humidity(RH)cycles under two amplitudes were imposed on red mudstone to simulate the weathering process.After RH cycles,a series of uniaxial compression tests,Brazilian splitting tests and bender-extender element tests were carried out to examine the reduction in strength and stiffness.The objective of this study is to develop an extended stress-volume framework characterizing the degradation of natural red mudstone both at microscale and macroscale.Accompanied by the irreversible swelling of the rock specimen is the progressive degradation of strength,stiffness and Poisson's ratio.A unified exponential degradation model in terms of the irreversible volumetric strain was thus proposed to capture such a degradation pattern.The effect of the initial rock fabric was evident.The highest degradation rate and potential were identified in slightly weathered specimens.Significant slaking of aggregates and crack propagation were confirmed by scanning electron microscope(SEM)micrographs,which were considered as the main consequence of structure damage leading to degradation of mechanical properties.The structure damage during RH cycles denoted the hysteresis nature in the response to the cycling hydraulic reaction,in turn causing the increase in volumetric strain.Thus,the stress-volume relation rather than the suction relation was found in more reasonable agreement with the experimental results.展开更多
This study discusses the benefits and challenges of well monitoring for Gulong shale oil production.It examines the Unified Transient Analysis(UTA)method,which integrates rate and pressure data to monitor changes in f...This study discusses the benefits and challenges of well monitoring for Gulong shale oil production.It examines the Unified Transient Analysis(UTA)method,which integrates rate and pressure data to monitor changes in fracture surface area and production efficiency in real-time.The UTA method allows for early detection of production impairments and provides feedback to optimize drawdown pressure,enhancing production without damaging fracture conductivity.Analysis of production data from Well A in the Daqing Oilfield demonstrates the method's efficacy,particularly in managing choke size adjustments and identifying fracture conductivity degradation.Despite its benefits,challenges such as data quality,manual data analysis,and the need for automated choke management are highlighted.The study underscores the necessity of integrating intelligent monitoring technologies and automating workflows to optimize Gulong shale oil production.展开更多
Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses si...Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses significant challenges and requires an integrated approach.In this study,a unified requirement modeling approach is proposed based on unified architecture framework(UAF).Theoretical models are proposed which compose formalized descriptions from both topdown and bottom-up perspectives.Based on the description,the UAF profile is proposed to represent the SoS mission and constituent systems(CS)goal.Moreover,the agent-based simulation information is also described based on the overview,design concepts,and details(ODD)protocol as the complement part of the SoS profile,which can be transformed into different simulation platforms based on the eXtensible markup language(XML)technology and model-to-text method.In this way,the design of the SoS is simulated automatically in the early design stage.Finally,the method is implemented and an example is given to illustrate the whole process.展开更多
The introduction of the digital renminbi(eCNY)by the People’s Bank of China serves as a means for the central bank to effectively comprehend macroeconomic dynamics and enhance payment infrastructure within the domest...The introduction of the digital renminbi(eCNY)by the People’s Bank of China serves as a means for the central bank to effectively comprehend macroeconomic dynamics and enhance payment infrastructure within the domestic market.Among the pioneering digital currencies,the eCNY is at the forefront of technological research and development,pilot implementation,and the establishment of a robust system.Thus,employing the unified theory of acceptance and use of technology,this study aims to explore the factors shaping the adoption of the eCNY and to determine the mediating effects of intention toward the eCNY and the moderating role of age and gender among various relationships.A cross-sectional survey methodology was deployed to collect data from pilot communities situated within the Yangtze River Delta,Pearl River Delta,and Beijing–Tianjin–Hebei regions.The empirical analysis comprised 809 valid online questionnaires,and the examination was conducted through structural equation modeling employing the partial least squares technique,ultimately subjecting the conceptual model to a comprehensive assessment.The results for intention to use the eCNY indicate that performance expectancy,effort expectancy,social influence,and perceived government policy have significant effects.Facilitating conditions and intentions toward the eCNY positively influenced its actual use.According to the findings of this study,age and sex did not moderate the effect of each hypothesis on the intention to use in the research model.This study breaks new ground by investigating the adoption of the eCNY,a novel form of currency,highlighting its multifaceted nature and providing empirical evidence for a comprehensive model encompassing psychological,social,and contextual factors.This study employs social surveys to identify obstacles in the process of promoting the widespread adoption of the eCNY and offers suggestions to the central bank and government to increase user enthusiasm and decrease user perceptions of risk,thereby promoting its widespread adoption.展开更多
Complex numbers play a pivotal role in both mathematics and physics,particularly in quantum mechanics,and are extensively utilized to depict the behavior of microscopic particles.Recognizing the significance of comple...Complex numbers play a pivotal role in both mathematics and physics,particularly in quantum mechanics,and are extensively utilized to depict the behavior of microscopic particles.Recognizing the significance of complex numbers,a framework of imaginarity resource theory has recently been established.In this work,we propose two types of imaginarity monotones induced by the unified(α,β)-relative entropy and investigate their properties.Moreover,we give explicit examples to illustrate our results.展开更多
Duality analysis of time series and complex networks has been a frontier topic during the last several decades.According to some recent approaches in this direction,the intrinsic dynamics of typical nonlinear systems ...Duality analysis of time series and complex networks has been a frontier topic during the last several decades.According to some recent approaches in this direction,the intrinsic dynamics of typical nonlinear systems can be better characterized by considering the related nonlinear time series from the perspective of networks science.In this paper,the associated network family of the unified piecewise-linear(PWL)chaotic family,which can bridge the gap of the PWL chaotic Lorenz system and the PWL chaotic Chen system,was firstly constructed and analyzed.We constructed the associated network family via the original and the modified frequency-degree mapping strategy,as well as the classical visibility graph and horizontal visibility graph strategy,after removing the transient states.Typical related network characteristics,including the network fractal dimension,of the associated network family,are computed with changes of single key parameter a.These characteristic vectors of the network are also compared with the largest Lyapunov exponent(LLE)vector of the related original dynamical system.It can be found that,some network characteristics are highly correlated with LLE vector of the original nonlinear system,i.e.,there is an internal consistency between the largest Lyapunov exponents,some typical associated network characteristics,and the related network fractal dimension index.Numerical results show that the modified frequency-degree mapping strategy can demonstrate highest correlation,which means it can behave better to capture the intrinsic characteristics of the unified PWL chaotic family.展开更多
The higher-order Kaup-Newell equation is examined by applying the Fokas unified method on the half-line.We demonstrate that the solution can be expressed in relation to the resolution of the Riemann-Hilbert problem.Th...The higher-order Kaup-Newell equation is examined by applying the Fokas unified method on the half-line.We demonstrate that the solution can be expressed in relation to the resolution of the Riemann-Hilbert problem.The jump matrix for this problem is derived from the spectral matrix,which is calculated based on both the initial conditions and the boundary conditions.The jump matrix is explicitly dependent and expressed through the spectral functions,which are derived from the initial and boundary information,respectively.These spectral functions are interdependent and adhere to a so-called global relationship.展开更多
Image dehazing aims to generate clear images critical for subsequent visual tasks.CNNs have made significant progress in the field of image dehazing.However,due to the inherent limitations of convolution operations,it...Image dehazing aims to generate clear images critical for subsequent visual tasks.CNNs have made significant progress in the field of image dehazing.However,due to the inherent limitations of convolution operations,it is challenging to effectively model global context and long-range spatial dependencies effectively.Although the Transformer can address this issue,it faces the challenge of excessive computational requirements.Therefore,we propose the FS-MSFormer network,an asymmetric encoder-decoder architecture that combines the advantages of CNNs and Transformers to improve dehazing performance.Specifically,the encoding process employs two branches formulti-scale feature extraction.One branch integrates an improved Transformer to enrich local and global contextual information while achieving linear complexity,and the other branch dynamically selects the most suitable frequency components in the frequency domain for enhancement.A single decoding branch is utilized to achieve feature recovery in the decoding process.After enhancing local and global features,they are fused with the encoded features,which reduces information loss and enhances the model’s robustness.A perceptual consistency loss function is also designed to minimize image color distortion.We conducted experiments on synthetic datasets SOTS-Indoor,Foggy Cityscapes,and the real-world dataset Dense-Haze,showing improved dehazing results.Compared with FSNet,our method has shown improvements of 0.95 dB in PSNR and 0.007 in SSIMon SOTS-Indoor dataset,and enhancements of 1.89 dB in PSNR and 0.0579 in SSIM on the Dense-Haze dataset demonstrate the effectiveness of our method.展开更多
文摘对珠子参中皂苷类成分进行定性鉴别分析,建立珠子参皂苷类多成分含量测定方法。采用超高效液相色谱-飞行时间质谱(UPLC-Q-TOF-MS/MS)技术对珠子参进行正、负离子模式扫描,使用UNIFI天然产物信息平台对珠子参所含的化学成分进行定性鉴别分析;以0.1%磷酸水-乙腈溶液为流动相进行梯度洗脱,柱温30℃,流速0.3 mL/min,进行珠子参皂苷类多成分含量测定。珠子参中共鉴定出39个化学成分,包括37个皂苷类化合物和2个皂苷母核,并总结了皂苷类化合物的裂解规律,建立了UPLC同时测定珠子参中人参皂苷Rb1、人参皂苷Ro、人参皂苷Rb3、竹节参皂苷IV、竹节参皂苷IVa、人参皂苷Rd、姜状三七皂苷R1和金盏花苷E的多指标含量测定方法,该方法中8个待测成分在检测质量浓度范围内线性关系良好,精密度、重复性、稳定性的相对标准偏差(relative standard deviation,RSD)均小于3.0%,样品中人参皂苷Rb1、人参皂苷Ro、人参皂苷Rb3、竹节参皂苷IV、竹节参皂苷IVa、人参皂苷Rd、姜状三七皂苷R1和金盏花苷E的平均加样回收率分别为102.4%、103.1%、97.97%、99.42%、102.7%、102.1%、95.23%、100.5%,RSD分别为1.0%、0.98%、0.81%、2.3%、0.81%、1.9%、0.96%、1.8%。该研究建立的方法可快速、准确地对珠子参中的皂苷类成分进行定性及定量分析。
文摘If the singularity of the cosmic Big Bang is taken as the origin of the reference coordinate system,the surrounding vacuum in the initial moments of it would exhibit radially-outward right-handed spiral motion at light speed.Based on this spatial motion hypothesis,we derive a unified field equation and a set of Maxwell’s equations for vacuum SWs(Scalar Waves)generating a huge spiral force field that drives the energy to spiral inwardly and distort,leading to the formation of mass.Furthermore,they also uncover that mass is fundamentally an ultimate expression of energy,manifesting as the result of spiral motion of space at light speed.And then,we indirectly validate the theory that coherent light waves’collision generate SWs and subsequently mass through the experiment verifying the Breit-Wheeler process.The establishment of our theory offers a new analytical tool for the exploration of mass origin,the cosmic Big Bang,unified field theories.
基金supported By Grant (PLN2022-14) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)。
文摘Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity.
文摘Downloads of national standards exceed 10 million times in the first half of 2025 In response to social needs,State Administration for Market Regulation(SAMR)had steadily promoted the full-text disclosure and free download of over 30,000 national standards that do not adopt international standards since the beginning of this year.In the first half of 2025,downloads exceeded 10 million times,providing strong support for the construction of a unified national market.Social groups accessing national standards for free increased significantly.In the first half of this year,the average monthly downloads of national standards surged tenfold from 190,000 times last year to 2.03 million times.Online reading reached nearly 15 million times,and page views hit 89 million times.The disclosure of national standards for free has effectively broken information barriers in standards,ensuring equal rights for business entities to read and download national standards.
基金supported in part by Multimedia University Research Fellow under Grant MMUI/250008in part by Telekom Research and Development Sdn Bhd under Grant RDTC/241149.
文摘Vehicle recognition plays a vital role in intelligent transportation systems,law enforcement,access control,and security operations—domains that are becoming increasingly dynamic and complex.Despite advancements,most existing solutions remain siloed,addressing individual tasks such as vehicle make and model recognition(VMMR),automatic number plate recognition(ANPR),and color classification separately.This fragmented approach limits real-world efficiency,leading to slower processing,reduced accuracy,and increased operational costs,particularly in traffic monitoring and surveillance scenarios.To address these limitations,we present a unified framework that consolidates all three recognition tasks into a single,lightweight system.The framework utilizes MobileNetV2 for efficient VMMR,YOLO(You Only Look Once)for accurate license plate detection,and histogram-based clustering in the HSV color space for precise color identification.Rather than optimizing each module in isolation,our approach emphasizes tight integration,enabling improved performance and reliability.The system also features adaptive image calibration and robust algorithmic enhancements to ensure consistent results under varying environmental conditions.Experimental evaluations demonstrate that the proposedmodel achieves a combined accuracy of 93.3%,outperforming traditional methods and offering practical scalability for deployment in real-world transportation infrastructures.
文摘In March 2025,prominent Chinese automaker NIO(Shanghai,China),the global leader in electric vehicle(EV)battery swapping,and Contemporary Amperex Technology Co.,Ltd.(CATL)(Nindge,China),the world’s biggest manufacturer of EV batteries,announced a strategic partnership to build the world’s largest battery swapping network,while also promoting unified standards and technologies[1].Just weeks later,CATL announced another partnership,this one with Chinese state-owned oil giant Sinopec(Beijing,China)to build 10000 new battery swapping stations in China,at least 500 in 2025[2].
文摘As important natural and pharmaceutical motifs,the catalytic construction of structurally diverse 3,3-disubstituted oxindoles often requires elaborate synthetic efforts on optimizations.Herein,we developed a simple and divergent approach for constructing reverse-prenylated and prenylated oxindoles launched by Ni catalysis with bulk chemical isoprene.Using C3-unsubstituted oxindoles as starting materials,mono reverse-prenylation was demonstrated in high chemo-and regioselectivities facilitated by the combination of Ni(0)and monodentate phosphine ligand.Using the obtained reverse-prenylated oxindoles as versatile synthon,substitutions at the pseudobenzylic position with various electrophiles created vicinal quaternary centers in a concise way.With the help of additives(PPh3 and NaH),air could be directly used as green oxidant to construct prenylated and reverse-prenylatedα-hydroxy-oxindoles divergently from the same substrates.In situ esterification of prenylatedα-hydroxy-oxindoles allowed subsequent Friedel-Crafts substitutions with diverse nucleophiles to deliver prenyl substituted dimeric or spiro-oxindoles.This protocol provides a divergent synthetic approach for the construction of highly functionalized 3,3-disubstituted oxindoles,which have been otherwise difficult to access in a unified approach.
基金Projects(52208382, 52278387, 51738002) supported by the National Natural Science Foundation of ChinaProject(2022YJS072) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-softening (SS) rock masses. This study proposes a novel analytical model to determine the GRCs of SS rock masses, incorporating ground reinforcement and intermediate principal stress (IPS). The SS constitutive model captures the progressive post- peak failure, while the elastic-brittle model simulates reinforced rock masses. Nine combined states are innovatively investigated to analyze plastic zone development in natural and reinforced regions. Each region is analyzed separately, and coupled through boundary conditions at interface. Comparison with three types of existing models indicates that these models overestimate reinforcement effects. The deformation prediction errors of single geological material models may exceed 75%. Furthermore, neglecting softening and residual zones in natural regions could lead to errors over 50%. Considering the IPS can effectively utilize the rock strength to reduce tunnel deformation by at least 30%, thereby saving on reinforcement and support costs. The computational results show a satisfactory agreement with the monitoring data from a model test and two tunnel projects. The proposed model may offer valuable insights into the design and construction of reinforced tunnel engineering.
基金Project(52274130)supported by the National Natural Science Foundation of ChinaProject(ZR2024ZD22)supported by the Major Basic Research Project of the Shandong Provincial Natural Science Foundation,China+2 种基金Project(2023375)supported by the Guizhou University Research and Innovation Team,ChinaProject(Leading Fund(2023)09)supported by the Natural Science Research Fund of Guizhou University,ChinaProject(JYBSYS2021101)supported by the Open Fund of Key Laboratory of Safe and Effective Coal Mining,Ministry of Education,China。
文摘The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.
基金The financial support from Project(Grant Nos.52278432,and 52168066)of National Natural Science Foundation of China and Project(Grant No.K2023G033)of the Science and Technology Research and Development Plan of China National Railway Group Co.,Ltd.were greatly appreciated.
文摘This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to consider the different initial rock fabrics.The long-term relative humidity(RH)cycles under two amplitudes were imposed on red mudstone to simulate the weathering process.After RH cycles,a series of uniaxial compression tests,Brazilian splitting tests and bender-extender element tests were carried out to examine the reduction in strength and stiffness.The objective of this study is to develop an extended stress-volume framework characterizing the degradation of natural red mudstone both at microscale and macroscale.Accompanied by the irreversible swelling of the rock specimen is the progressive degradation of strength,stiffness and Poisson's ratio.A unified exponential degradation model in terms of the irreversible volumetric strain was thus proposed to capture such a degradation pattern.The effect of the initial rock fabric was evident.The highest degradation rate and potential were identified in slightly weathered specimens.Significant slaking of aggregates and crack propagation were confirmed by scanning electron microscope(SEM)micrographs,which were considered as the main consequence of structure damage leading to degradation of mechanical properties.The structure damage during RH cycles denoted the hysteresis nature in the response to the cycling hydraulic reaction,in turn causing the increase in volumetric strain.Thus,the stress-volume relation rather than the suction relation was found in more reasonable agreement with the experimental results.
文摘This study discusses the benefits and challenges of well monitoring for Gulong shale oil production.It examines the Unified Transient Analysis(UTA)method,which integrates rate and pressure data to monitor changes in fracture surface area and production efficiency in real-time.The UTA method allows for early detection of production impairments and provides feedback to optimize drawdown pressure,enhancing production without damaging fracture conductivity.Analysis of production data from Well A in the Daqing Oilfield demonstrates the method's efficacy,particularly in managing choke size adjustments and identifying fracture conductivity degradation.Despite its benefits,challenges such as data quality,manual data analysis,and the need for automated choke management are highlighted.The study underscores the necessity of integrating intelligent monitoring technologies and automating workflows to optimize Gulong shale oil production.
基金Fifth Electronic Research Institute of the Ministry of Industry and Information Technology(HK07202200877)Pre-research Project on Civil Aerospace Technologies of CNSA(D020101)+2 种基金Zhejiang Provincial Science and Technology Plan Project(2022C01052)Frontier Scientific Research Program of Deep Space Exploration Laboratory(2022-QYKYJHHXYF-018,2022-QYKYJH-GCXD-001)Zhiyuan Laboratory(ZYL2024001)。
文摘Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses significant challenges and requires an integrated approach.In this study,a unified requirement modeling approach is proposed based on unified architecture framework(UAF).Theoretical models are proposed which compose formalized descriptions from both topdown and bottom-up perspectives.Based on the description,the UAF profile is proposed to represent the SoS mission and constituent systems(CS)goal.Moreover,the agent-based simulation information is also described based on the overview,design concepts,and details(ODD)protocol as the complement part of the SoS profile,which can be transformed into different simulation platforms based on the eXtensible markup language(XML)technology and model-to-text method.In this way,the design of the SoS is simulated automatically in the early design stage.Finally,the method is implemented and an example is given to illustrate the whole process.
基金funded by Jiangsu Education Department(Ref.No.2022SJYB0750).
文摘The introduction of the digital renminbi(eCNY)by the People’s Bank of China serves as a means for the central bank to effectively comprehend macroeconomic dynamics and enhance payment infrastructure within the domestic market.Among the pioneering digital currencies,the eCNY is at the forefront of technological research and development,pilot implementation,and the establishment of a robust system.Thus,employing the unified theory of acceptance and use of technology,this study aims to explore the factors shaping the adoption of the eCNY and to determine the mediating effects of intention toward the eCNY and the moderating role of age and gender among various relationships.A cross-sectional survey methodology was deployed to collect data from pilot communities situated within the Yangtze River Delta,Pearl River Delta,and Beijing–Tianjin–Hebei regions.The empirical analysis comprised 809 valid online questionnaires,and the examination was conducted through structural equation modeling employing the partial least squares technique,ultimately subjecting the conceptual model to a comprehensive assessment.The results for intention to use the eCNY indicate that performance expectancy,effort expectancy,social influence,and perceived government policy have significant effects.Facilitating conditions and intentions toward the eCNY positively influenced its actual use.According to the findings of this study,age and sex did not moderate the effect of each hypothesis on the intention to use in the research model.This study breaks new ground by investigating the adoption of the eCNY,a novel form of currency,highlighting its multifaceted nature and providing empirical evidence for a comprehensive model encompassing psychological,social,and contextual factors.This study employs social surveys to identify obstacles in the process of promoting the widespread adoption of the eCNY and offers suggestions to the central bank and government to increase user enthusiasm and decrease user perceptions of risk,thereby promoting its widespread adoption.
基金supported by National Natural Science Foundation of China(Grant No.12161056)Natural Science Foundation of Jiangxi Province(Grant No.20232ACB211003)。
文摘Complex numbers play a pivotal role in both mathematics and physics,particularly in quantum mechanics,and are extensively utilized to depict the behavior of microscopic particles.Recognizing the significance of complex numbers,a framework of imaginarity resource theory has recently been established.In this work,we propose two types of imaginarity monotones induced by the unified(α,β)-relative entropy and investigate their properties.Moreover,we give explicit examples to illustrate our results.
文摘Duality analysis of time series and complex networks has been a frontier topic during the last several decades.According to some recent approaches in this direction,the intrinsic dynamics of typical nonlinear systems can be better characterized by considering the related nonlinear time series from the perspective of networks science.In this paper,the associated network family of the unified piecewise-linear(PWL)chaotic family,which can bridge the gap of the PWL chaotic Lorenz system and the PWL chaotic Chen system,was firstly constructed and analyzed.We constructed the associated network family via the original and the modified frequency-degree mapping strategy,as well as the classical visibility graph and horizontal visibility graph strategy,after removing the transient states.Typical related network characteristics,including the network fractal dimension,of the associated network family,are computed with changes of single key parameter a.These characteristic vectors of the network are also compared with the largest Lyapunov exponent(LLE)vector of the related original dynamical system.It can be found that,some network characteristics are highly correlated with LLE vector of the original nonlinear system,i.e.,there is an internal consistency between the largest Lyapunov exponents,some typical associated network characteristics,and the related network fractal dimension index.Numerical results show that the modified frequency-degree mapping strategy can demonstrate highest correlation,which means it can behave better to capture the intrinsic characteristics of the unified PWL chaotic family.
文摘The higher-order Kaup-Newell equation is examined by applying the Fokas unified method on the half-line.We demonstrate that the solution can be expressed in relation to the resolution of the Riemann-Hilbert problem.The jump matrix for this problem is derived from the spectral matrix,which is calculated based on both the initial conditions and the boundary conditions.The jump matrix is explicitly dependent and expressed through the spectral functions,which are derived from the initial and boundary information,respectively.These spectral functions are interdependent and adhere to a so-called global relationship.
文摘Image dehazing aims to generate clear images critical for subsequent visual tasks.CNNs have made significant progress in the field of image dehazing.However,due to the inherent limitations of convolution operations,it is challenging to effectively model global context and long-range spatial dependencies effectively.Although the Transformer can address this issue,it faces the challenge of excessive computational requirements.Therefore,we propose the FS-MSFormer network,an asymmetric encoder-decoder architecture that combines the advantages of CNNs and Transformers to improve dehazing performance.Specifically,the encoding process employs two branches formulti-scale feature extraction.One branch integrates an improved Transformer to enrich local and global contextual information while achieving linear complexity,and the other branch dynamically selects the most suitable frequency components in the frequency domain for enhancement.A single decoding branch is utilized to achieve feature recovery in the decoding process.After enhancing local and global features,they are fused with the encoded features,which reduces information loss and enhances the model’s robustness.A perceptual consistency loss function is also designed to minimize image color distortion.We conducted experiments on synthetic datasets SOTS-Indoor,Foggy Cityscapes,and the real-world dataset Dense-Haze,showing improved dehazing results.Compared with FSNet,our method has shown improvements of 0.95 dB in PSNR and 0.007 in SSIMon SOTS-Indoor dataset,and enhancements of 1.89 dB in PSNR and 0.0579 in SSIM on the Dense-Haze dataset demonstrate the effectiveness of our method.