1 Introduction Current continual learning methods[1–4]can utilize labeled data to alleviate catastrophic forgetting effectively.However,obtaining labeled samples can be difficult and tedious as it may require expert ...1 Introduction Current continual learning methods[1–4]can utilize labeled data to alleviate catastrophic forgetting effectively.However,obtaining labeled samples can be difficult and tedious as it may require expert knowledge.In many practical application scenarios,labeled and unlabeled samples exist simultaneously,with more unlabeled than labeled samples in streaming data[5,6].Unfortunately,existing class-incremental learning methods face limitations in effectively utilizing unlabeled data,thereby impeding their performance in incremental learning scenarios.展开更多
文摘1 Introduction Current continual learning methods[1–4]can utilize labeled data to alleviate catastrophic forgetting effectively.However,obtaining labeled samples can be difficult and tedious as it may require expert knowledge.In many practical application scenarios,labeled and unlabeled samples exist simultaneously,with more unlabeled than labeled samples in streaming data[5,6].Unfortunately,existing class-incremental learning methods face limitations in effectively utilizing unlabeled data,thereby impeding their performance in incremental learning scenarios.