Deployment of nodes based on K-barrier coverage in an underground wireless sensor network is described. The network has automatic routing recovery by using a basic information table (BIT) for each node. An RSSI positi...Deployment of nodes based on K-barrier coverage in an underground wireless sensor network is described. The network has automatic routing recovery by using a basic information table (BIT) for each node. An RSSI positioning algorithm based on a path loss model in the coal mine is used to calculate the path loss in real time within the actual lane way environment. Simulation results show that the packet loss can be controlled to less than 15% by the routing recovery algorithm under special recovery circum- stances. The location precision is within 5 m, which greatly enhances performance compared to tradi- tional frequency location systems. This approach can meet the needs for accurate location underground.展开更多
This paper shows the method of estimating spatiotemporal distribution of pedestrians by using watch cameras. We estimate the distribution without tracking technology, with pedestrian's privacy protected and in Umeda ...This paper shows the method of estimating spatiotemporal distribution of pedestrians by using watch cameras. We estimate the distribution without tracking technology, with pedestrian's privacy protected and in Umeda underground mall. Lately spatiotemporal distribution of pedestrians has being increasingly important in the field of urban planning, disaster prevention planning, marketing and so on. Although many researchers have tried to capture the information of location as dealing with some sensors, some problems still remain, such as the investment of sensors, the restriction of the number of people who has the device they are able to capture. From such background, we develop an original labelling algorithm and estimate the spatiotemporal distribution of pedestrians and the information of the passing time and the direction of pedestrians from sequential images of a watch camera.展开更多
基金supported by the National Key Technology R&D Program of China (No. 2008BAH37B05095)
文摘Deployment of nodes based on K-barrier coverage in an underground wireless sensor network is described. The network has automatic routing recovery by using a basic information table (BIT) for each node. An RSSI positioning algorithm based on a path loss model in the coal mine is used to calculate the path loss in real time within the actual lane way environment. Simulation results show that the packet loss can be controlled to less than 15% by the routing recovery algorithm under special recovery circum- stances. The location precision is within 5 m, which greatly enhances performance compared to tradi- tional frequency location systems. This approach can meet the needs for accurate location underground.
基金Partially Supported by Grant-in-Aid for Scientific Research(A)(No.25240004)
文摘This paper shows the method of estimating spatiotemporal distribution of pedestrians by using watch cameras. We estimate the distribution without tracking technology, with pedestrian's privacy protected and in Umeda underground mall. Lately spatiotemporal distribution of pedestrians has being increasingly important in the field of urban planning, disaster prevention planning, marketing and so on. Although many researchers have tried to capture the information of location as dealing with some sensors, some problems still remain, such as the investment of sensors, the restriction of the number of people who has the device they are able to capture. From such background, we develop an original labelling algorithm and estimate the spatiotemporal distribution of pedestrians and the information of the passing time and the direction of pedestrians from sequential images of a watch camera.