期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
Influence of Undercooling on the Solidification Behaviour and Microstructure of Non-equilibrium Solidification of Cu-based Alloys
1
作者 LI Hejun AN Hongen +6 位作者 Willey Liew Yun Hsien Ismal Saad Bih Lii Chuab Nancy Julius Siambun CAO Shichao WANG Hongfu YAO Wei 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期610-618,共9页
The evolution of the microstructure and morphology of Cu55Ni45 and Cu60Ni40 alloys under varying degrees of undercooling was investigated through molten glass purification and cyclic superheating technology.By increas... The evolution of the microstructure and morphology of Cu55Ni45 and Cu60Ni40 alloys under varying degrees of undercooling was investigated through molten glass purification and cyclic superheating technology.By increasing the Cu content,the effect of Cu on the evolution of the microstructure and morphology of the Cu-Ni alloy during undercooling was studied.The mechanism of grain refinement at different degrees of undercooling and the effect of Cu content on its solidification behaviour were investigated.The solidification behaviour of Cu55Ni45 and Cu60Ni40 alloys was investigated using infrared thermometry and high-speed photography.The results indicate that both Cu55Ni45 and Cu60Ni40 alloy melts undergo only one recalescence during rapid solidification.The degree of recalescence increases approximately linearly with increasing undercooling.The solidification front of the alloy melts undergoes a transition process from a small-angle plane to a sharp front and then to a smooth arc.However,the growth of the subcooled melt is constrained to a narrow range,facilitating the formation of a coarse dendritic crystal morphology in the Cu-Ni alloy.At large undercooling,the stress breakdown of the directionally growing dendrites is primarily caused by thermal diffusion.The strain remaining in the dendritic fragments provides the driving force for recrystallisation of the tissue to occur,which in turn refines the tissue. 展开更多
关键词 undercooling MICROSTRUCTURE grain refinement solidification rate
原文传递
Influence of Undercooling on the Non-equilibrium Solidification Process and Microstructure of Cu-Ni Alloys
2
作者 WANG Junyuan DU Wenhua +1 位作者 HAO Bohao WANG Hongfu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第4期1151-1161,共11页
By applying the rapid solidification technique of deep undercooling,Cu65Ni35 and Cu60Ni40 alloys achieved maximum undercoolings of 284 and 222 K,respectively.Microstructural images captured reveal grain refinement in ... By applying the rapid solidification technique of deep undercooling,Cu65Ni35 and Cu60Ni40 alloys achieved maximum undercoolings of 284 and 222 K,respectively.Microstructural images captured reveal grain refinement in both alloys across both large and small undercooling ranges.High-speed photography was used to analyze the relationship between solidification front morphology and undercooling,showing that dendrite remelting and fragmentation caused grain refinement under small undercooling,while stress-induced recrystallization is responsible under large undercooling.Microhardness testing further demonstrates a sudden drop in microhardness near the critical undercooling point,providing evidence for grain refinement due to recrystallization in large undercooling tissues. 展开更多
关键词 undercooling MICROSTRUCTURE grain refinement solidification rate
原文传递
Preparation of Laser Cladding Coating Undercooling Cu-based Alloy and Co on Non-equilibrium Solidification Structure 被引量:1
3
作者 田徐铭 CAO Shichao +3 位作者 HOU Kai HOU Xiaopeng WANG Hongfu 张煜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期463-472,共10页
The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy ... The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating. 展开更多
关键词 non-equilibrium solidification structure undercooling RECRYSTALLIZATION laser cladding coating
原文传递
Evading strength−ductility trade-off of GH605 alloy using magnetic field-assisted undercooling treatment
4
作者 Yi-xuan HE Fan BU +6 位作者 Zhang-chi BIAN Ming-xiu XIANG Meng-meng ZHOU Xu-dong LIU Lei ZHU Jun WANG Jin-shan LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2575-2588,共14页
Undercooling solidification under a magnetic field(UMF)is an effective way to tailor the microstructure and properties of Co-based alloys.In this study,by attributing to the UMF treatment,the strength−ductility trade-... Undercooling solidification under a magnetic field(UMF)is an effective way to tailor the microstructure and properties of Co-based alloys.In this study,by attributing to the UMF treatment,the strength−ductility trade-off dilemma in GH605 superalloy is successfully overcome.The UMF treatment can effectively refine the grains and increase the solid solubility,leading to the high yield strength.The main deformation mechanism in the as-forged alloy is dislocation slipping.By contrast,multiple deformation mechanisms,including stacking faults,twining,dislocation slipping,and their strong interactions are activated in the UMF-treated sample during compression deformation,which enhances the strength and ductility simultaneously.In addition,the precipitation of hard Laves phases along the grain boundaries can be obtained after UMF treatment,hindering crack propagation during compression deformation. 展开更多
关键词 undercooling treatment magnetic field GH605 alloy strengthening mechanisms
在线阅读 下载PDF
Undercooling and Solidification of Sn-Pb Alloy Droplets Prepared by Uniform Droplet Spray 被引量:6
5
作者 吴萍 陈新亮 +4 位作者 姜恩永 赵慈 杜洪明 田雅丽 ANDO Teiichi 《Transactions of Tianjin University》 EI CAS 2003年第2期89-92,共4页
The undercooling and solidification of 150 μm and 185 μm droplets of Sn 5%Pb alloy prepared by the uniform droplet spray (UDS) process have been investigated. The enthalpy of the droplet has been measured by non adi... The undercooling and solidification of 150 μm and 185 μm droplets of Sn 5%Pb alloy prepared by the uniform droplet spray (UDS) process have been investigated. The enthalpy of the droplet has been measured by non adiabatic calorimetric method as a function of the flight distance. A droplet solidification simulation model has been used to compare with the experimental data. The results show that the enthalpy released by the droplets in the calorimeter is 11.88 J/g and 22.29 J/g less than the simulated values up to a certain flight distance at 0.485 m and 0.460 m for 150 μm and 185 μm droplets respectively, but agrees with the expected values at larger distance. The nucleation of the droplets takes place at the distance where the experimental and simulated enthalpy values agree. The droplets quenched before nucleation solidify into metastable supersaturated solid solution and have large undercooling. The formation of the metastable structure in the droplets has been verified metallographically and by calculations based on a thermodynamic model. 展开更多
关键词 undercooling Sn Pb alloy DROPLET SOLIDIFICATION
在线阅读 下载PDF
DENUCLEATION AND HIGH UNDERCOOLING OF Ni-32.5%Sn EUTECTIC ALLOY 被引量:2
6
作者 WEI Bingbo YANG Gencang ZHOU Yaohe Northwestern Polytechnical University,Xi’an,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1991年第8期115-120,共6页
Undercoolings up to 397 K(0.283 T_E)have been obtained for Ni-32.5% Sn eutectic alloy melted by superheating-cooling cycles and denucleating with inorganic glasses.The predomi- nant dissipation of heat for highly unde... Undercoolings up to 397 K(0.283 T_E)have been obtained for Ni-32.5% Sn eutectic alloy melted by superheating-cooling cycles and denucleating with inorganic glasses.The predomi- nant dissipation of heat for highly undercooled alloy melt is through radiation.An approxi- mate method is consequently derived to calculate its mean specific heat from measured cooling curves.With the aid of high speed cinematography,it is revealed that the surface or interface heterogeneous nucleation takes place in preference to homogeneous nucleation even though the undercooling has exceeded 0.2 T_E. 展开更多
关键词 undercooling rapid solidification NUCLEATION eutectic alloy SPECIFIC
在线阅读 下载PDF
Vacuum Electromagnetic Levitation Melting and Undercooling of Peritectic Terfenol-D 被引量:2
7
作者 马伟增 郑红星 +1 位作者 季诚昌 李建国 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第5期563-566,共4页
For the first time, the undercooling of a magnetostrictive material a near peritectic Tb 0.27 Dy 0.73 Fe 1.90 alloy was realized by vacuum electromagnetic levitation melting and 60 K undercooling was obt... For the first time, the undercooling of a magnetostrictive material a near peritectic Tb 0.27 Dy 0.73 Fe 1.90 alloy was realized by vacuum electromagnetic levitation melting and 60 K undercooling was obtained. There is one recalescence behavior during solidification of the undercooled melt,which can attribute to the priority precipitation of REFe 2 phase instead of REFe 3 phase, due to preferential nucleation and higher crystal growth rate of REFe 2 phase and the suppression of peritectic reaction. According to the crystal structural characteristics of REFe 2 and REFe 3, REFe 2 is a Laves phase intermetallics with MgCu 2 type structure, which has similar polytetrahedral structure with short range ordered structure in undercooled melt and has lower potential barrier for nucleation than that of REFe 3,which lead to the preferential nucleation of REFe 2 phase directly from the undercooled melt. Also, the similarity of structures between REFe 2 phase and undercooled melt leads to higher crystal growth rate of REFe 2 phase than that of REFe 3. 展开更多
关键词 phase diagram and phase transformation undercooling electromagnetic levitation melting terfenol D laves phase PERITECTIC rare earths
在线阅读 下载PDF
Effects of the fourth component and undercooling on morphology of primary Mg-Zn-Y icosahedral quasicrystal phase under normal casting conditions 被引量:2
8
作者 Wang Zhifeng Zhao Weimin +2 位作者 Bo-Young Hur Huang Chunying Yu Chengquan 《China Foundry》 SCIE CAS 2009年第4期293-299,共7页
The paper presents some results of the investigation on effects of the fourth component(Ti,C,Sb or Cu)and undercooling on the morphology,size and forming process of primary Mg-Zn-Y icosahedral quasicrystal phase(I-pha... The paper presents some results of the investigation on effects of the fourth component(Ti,C,Sb or Cu)and undercooling on the morphology,size and forming process of primary Mg-Zn-Y icosahedral quasicrystal phase(I-phase)under normal casting conditions.The result shows that the addition of certain amount of fourth component can transform I-phase morphology from petal-like to spherical.However,I-phase will grow up to petal-like if superfluous addition of the fourth component applied.It is also found that the solidified morphology of I-phase depends on the stability of spherical I-phase during the subsequent growth,and critical radius of maintaining the spherical I-phase interface relatively stable.Further,mini-sized spherical I-phase can be produced with high content of the fourth component by undercooling.Such findings are beneficial for industrializing Mgbased quasicrystals. 展开更多
关键词 magnesium alloy QUASICRYSTAL fourth component MORPHOLOGY degree of undercooling
在线阅读 下载PDF
Nucleation undercooling, solidification structures and magnetic properties of Nd_9Fe_(85–x)Ti_4C_2B_x (x=10–15) magnetic alloys 被引量:1
9
作者 潘晶 肖晓燕 +3 位作者 刘新才 董友仁 杨梦琳 詹玉勇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第4期390-395,共6页
Nd_9Fe_(85–x)Ti_4C_2B_x(x=10–15) magnetic alloys were investigated by differential thermal analysis and X-ray diffraction analysis. The results showed that with the B content increasing from 10 at.% to 15 at.%, ... Nd_9Fe_(85–x)Ti_4C_2B_x(x=10–15) magnetic alloys were investigated by differential thermal analysis and X-ray diffraction analysis. The results showed that with the B content increasing from 10 at.% to 15 at.%, the liquidus temperatures TL of the alloys decreased from 1498.5 to 1472.5 K; the solidus temperatures TS of them increased from 1353.2 to 1358.3 K; and the nucleation undercooling of the alloy melts cooled at the rate of 40 K/min decreased from 122.8 to 95.9 K, resulting in the solidification structures consisting of Nd_2Fe_(14)B, Fe_3B, α-Fe, Nd1.1Fe4B4 and TiC nanocrystallines. Furthermore, the Nd_9Fe_(85–x)Ti_4C_2B_x(x=11, 13, 15) bulk alloys in sheet form with the thickness of 0.7 mm were prepared by copper mold suction casting and their solidification characteristics and solidification structures under sub-rapidly cooling rate were investigated. The results showed that partially amorphous structures were obtained in the as-cast bulk alloys and the amount of amorphous decreased with the increase of the B content. By annealing the as-cast bulk alloys at 923 K for 10 min, the nanocomposite microstructures composed with Nd_2Fe_(14)B, Fe_3B and α-Fe nanocrystallines, which showed a single-phase hard magnetic behavior and enhanced magnetic properties, were achieved. 展开更多
关键词 magnetic alloys thermophysical properties nucleation undercooling solidification microstructures magnetic properties rare earths
原文传递
Undercooling heredity of Cu_(70)Ni_(30) melt solidified in non-catalytic nucleation coated mould
10
作者 郭学锋 刘勇长 +1 位作者 杨根仓 邢建东 《中国有色金属学会会刊:英文版》 CSCD 2000年第4期481-484,共4页
A new concept of undercooling heredity is developed to evaluate the undercooling ability in a non catalytic nucleation coated mould, where alloy melts were highly undercooled previously. Before the heredity experiment... A new concept of undercooling heredity is developed to evaluate the undercooling ability in a non catalytic nucleation coated mould, where alloy melts were highly undercooled previously. Before the heredity experiment a non catalytic nucleation composite glass lined coating (B F) was prepared on the inner surface of mould and the Cu 70 Ni 30 alloy was selected to perform undercooling experiment in the B F non catalytic coating mould. Its ratio of undercooling heredity was 0.76. The results prove that the B F coating is an ideal non catalytic media for purified Cu 70 Ni 30 alloy melts due to its small contact angle between the melt and coating layer. Considering that various microstructures form under different undercoolings, two critical undercoolings, Δ T 1 and Δ T 2, and their corresponding microstructures of Cu 70 Ni 30 alloy are well defined. Moreover, it is found that the manned trigging solidification in the non catalytic coating mould could be used to get directional undercooling dendrite structure while the melt undercooling is larger than the critical undercooling Δ T 2. 展开更多
关键词 CU 70 NI 30 alloy non catalytic NUCLEATION coating undercooling HEREDITY
在线阅读 下载PDF
Effects of a high magnetic field on single-phase interface evolution,additional interfacial energy and nucleation undercooling in Al-based alloy
11
作者 Lin Wang Zhipeng Long +3 位作者 Long Hou Song Yan Baode Sun Xi Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第23期43-53,共11页
The effects of a high magnetic field on the evolution of the single-phase interface and the liquid-solid interface energy in Al-Cu alloy were investigated experimentally.It is found that the application of the magneti... The effects of a high magnetic field on the evolution of the single-phase interface and the liquid-solid interface energy in Al-Cu alloy were investigated experimentally.It is found that the application of the magnetic field has a significant promotion effect on the migration of liquid droplets,accelerating the formation of the single-phase interface.This should be attributed to the thermoelectric(TE)magnetic convection in the droplets which has enhanced the diffusion and increased the migration speed of liquid droplets.Further,the effect of the high magnetic field on the solid-liquid interface energy is analyzed by an improved grain boundary groove(GBG)method.The average solid-liquid interface energy of theα-Al/Al-Cu and Al2Cu/Al-Cu systems increases and decreases with the increase of the magnetic field,respectively.The above experiment results are well explained based on the formation and interaction of the magnetic dipole at the solid-liquid interface.Moreover,experimental results reveal that the magnetic-field-induced interface energy increases and decreases the nucleation undercooling of the Al-30wt.%Cu alloy and Al-35wt.%Cu alloy,respectively.By studying the effect of the magnetic-field-induced interface energy on the nucleation undercooling,the understanding of the interface energy-induced nucleation undercooling deepens. 展开更多
关键词 High magnetic field Interface energy Nucleation undercooling Grain boundary groove
原文传递
RAPID QUENCHING AND LARGE UNDERCOOLING IN MULTISTAGE RAPID SOLIDIFICATION POWDER-MAKING PROCESS
12
作者 Chen, Zhenhua Jiang, Xiangyang Zhou, Duosan Wang, Yun Huang, Peiyun Central-South University of Technology, Changsha 410083, China 《中国有色金属学会会刊:英文版》 CSCD 1993年第3期29-35,共7页
The rapid quenching and large undercooling phenomena and device working principle in the rapid solidification process are analyzed, and the working characteristics are presented in detail. The results show that these ... The rapid quenching and large undercooling phenomena and device working principle in the rapid solidification process are analyzed, and the working characteristics are presented in detail. The results show that these multistage device are ideal for making amorphous, quasicrystalline, microcrystalline and fine metallic powders. 展开更多
关键词 RAPID quenching LARGE undercooling MULTISTAGE RAPID salidification powder-making
在线阅读 下载PDF
Are They Formed by Undercooling Crystallization or Devitrification?-On Origin of Various Textures inPlasticFragmentsofWeldedTuffs
13
作者 Du Yangsong(Department of Science and Technology, China University of Geosciences, Beijing 100083) 《Journal of Earth Science》 SCIE CAS CSCD 1996年第2期161-164,共4页
A comprehensive petrographic observation contributes to classification of various textures in welded tuffs into two types, the textures in plastic fragments and the ones in rigid fragments. A detailed petrographic stu... A comprehensive petrographic observation contributes to classification of various textures in welded tuffs into two types, the textures in plastic fragments and the ones in rigid fragments. A detailed petrographic study of the textures in plastic fragments leads to suggestion that thesetextures are not a type of devitrification textures. and also that they were formed not by devitrification but by undercooling crystallization. This viewpoint is supported by results of undercooling crystallization experiments. The petrographic characteristics of these textures are satisfactorily demonstrated by the undercooling crystallization theory. 展开更多
关键词 welded tuff textural origin undercooling crystallization
在线阅读 下载PDF
Isothermal Crystallization Behavior of Biodegradable Poly (butylene succinate-co-terephthalate) (PBST) Copolyesters at High Undercoolings
14
作者 许新建 李发学 +1 位作者 罗胜利 俞建勇 《Journal of Donghua University(English Edition)》 EI CAS 2008年第4期405-407,共3页
Poly (butylene succinatc-co-terephthalate) (PBST) copolycsters were prepared by polycondensation. The crystallization behavior of the as-prepared copolyesters was investigated by depolarized light intensity (DLI... Poly (butylene succinatc-co-terephthalate) (PBST) copolycsters were prepared by polycondensation. The crystallization behavior of the as-prepared copolyesters was investigated by depolarized light intensity (DLI) at high undercoolings. According to Avrami equation, the exponent n, independent of the crystallization temperature, is at a range of 2. 5 to 3. 4, which probably corresponds to the heterogeneous mucleation and a 3-dimensional spherulitic growth. The maximum crystallization rate, very useful to polymer processing, was found at about 90℃ based on the half-crystallization time t1/2 analysis. 展开更多
关键词 PBST copol yesters DLI isothermal crystallization high undercoolings
在线阅读 下载PDF
一个含Kinetic Undercooling的两相stefan问题
15
作者 徐龙封 《安徽教育学院学报》 2000年第6期7-9,49,共4页
本文考虑了一个含KineticUndercooling的两相stefan问题并得到了这个问题关于时间的局部古典解存在唯一性
关键词 KINETIC undercooling 不动点定理 两相stefan问题 局部古典解
在线阅读 下载PDF
Rapid dendritic growth kinetics of primary phase within supercooled Zr-V alloy at electrostatic levitation state
16
作者 C.H.Zheng D.N.Liu +2 位作者 H.Liao L.Hu H.P.Wang 《Journal of Materials Science & Technology》 2025年第2期182-190,共9页
The liquid Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys were undercooled to the maximum undercooling of 364 K(0.18 T_(L)),405 K(0.21 T_(L)),and 375 K(0.21 T_(L)),respectively,by using electrostatic levitation technique.The Zr... The liquid Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys were undercooled to the maximum undercooling of 364 K(0.18 T_(L)),405 K(0.21 T_(L)),and 375 K(0.21 T_(L)),respectively,by using electrostatic levitation technique.The Zr_(91.4)V_(8.6) and Zr_(83.5)V_(16.5) alloys present only one recalescence during liquid/solid phase transition,while the Zr_(70)V_(30) alloy presents a transformation from two recalescence to one recalescence phenomenon with a critical undercooling of approximately 300 K.According to the LKT/BCT model,the calculated results of the primary β-Zr dendrite growth velocity in undercooled liquid Zr_(91.4)V_(8.6) and Zr_(83.5)V_(16.5) alloys agree well with the experiments.The velocity inflection points at 119 K of Zr_(91.4)V_(8.6) alloy and 201 K of Zr_(83.5)V_(16.5) alloy could be explained by the competition between solutal undercooling control and thermal undercooling control modes.For Zr_(70)V_(30) alloy solidified in the P1 with twice recalescence,a critical second undercooling of 253 K and corresponding undercooling of 65 and 244 K are obtained.When the un-dercooling is in the range of 65-244 K,the second undercooling would be greater than 253 K,and the residual liquid phase would solidify into anomalous eutectic microstructure for Zr_(70)V_(30) alloy.The Vickers hardness of Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys all show a quadratic relationship with undercooling.Under electrostatic levitation condition,the mechanical property of Zr-V alloys could be significantly regulated through solidifying the alloys at different undercoolings. 展开更多
关键词 undercooling Zr-V alloy Electrostatic levitation Solidification HYPOEUTECTIC DENDRITE Growth kinetics
原文传递
Microstructural Evolution of Rapidly Solidified Ni-Cu Alloys
17
作者 QU Shuwei LI Zejun +4 位作者 WANG Hongfu TIAN Xiaoguang QIAN Zhike LI Ruiqin YAO Wei 《Journal of Wuhan University of Technology(Materials Science)》 2025年第6期1759-1765,共7页
This study systematically investigated the microstructural evolution of binary Ni-Cu alloys(Cu55Ni45,Cu60Ni40,and Ni65Cu35)under deep undercooling conditions.The controlled rapid solidification experiments combined wi... This study systematically investigated the microstructural evolution of binary Ni-Cu alloys(Cu55Ni45,Cu60Ni40,and Ni65Cu35)under deep undercooling conditions.The controlled rapid solidification experiments combined with optical microscopy and electron backscatter diffraction(EBSD)analysis demonstrate that increasing undercooling(ΔT)can induce a consistent sequence of microstructural transitions:coarse dendrites,fine equiaxed grains(first refinement),oriented fine dendrites,and fine equiaxed grains(second refinement).Two distinct grain refinement events are identified,with critical undercooling thresholds(ΔT)dependent on composition:increasing Cu content increases the critical undercoolingΔT*required for the second refinement(Cu55Ni45:227 K;Cu60Ni40:217 K;Ni65Cu35:200 K).The BCT(Bridgman Crystal Growth)model quantitatively elucidates this behavior,revealing a shift from solute-diffusion-dominated growth at low undercooling to thermally dominated diffusion at high undercooling(ΔT).Crucially,refined grains at high undercooling exhibit smaller sizes(10μm)and higher uniformity than those at low undercooling(20μm).These findings provide fundamental insights into non-equilibrium solidification mechanisms and establish a foundation for designing high-performance Ni-Cu alloys via deep undercooling processing. 展开更多
关键词 deep undercooling Ni-Cu alloys microstructural evolution grain refinement BCT model rapid solidification
原文传递
Enhancing the Mechanical Properties Induced by Ta Microalloying in TIG‑Welded Ti_(2)AlNb‑Based Intermetallic Alloy
18
作者 Hao Zhang Le Zai Xiaohuai Xue 《Acta Metallurgica Sinica(English Letters)》 2025年第3期419-434,共16页
During the tungsten inert gas(TIG)welding process of Ti_(2)AlNb alloy,high heat input leads to the formation of coarse grains,which are detrimental to the mechanical properties of welded joints.To address this problem... During the tungsten inert gas(TIG)welding process of Ti_(2)AlNb alloy,high heat input leads to the formation of coarse grains,which are detrimental to the mechanical properties of welded joints.To address this problem,Ta microalloyed welding wires were developed to enhance the strength of the welded joints.The Ta-modifed fusion zone(FZ)exhibited a well-defned structure with a smooth,defect-free surface.Systematic analysis of the microstructure evolution and mechanical properties of the welded joints revealed that the Ta element completely dissolves into the FZ.During solidifcation,a signifcant constitutional undercooling efect occurs,promoting the columnar-to-equiaxed transition(CET)and reducing grain size from 187.42 to 133.49μm.Mechanical properties tests indicated that with increased Ta content,the strength of the welded joints initially increased and then decreased.When the Ta content in the welding wire was 1 wt%,the joints showed the best performance,with a tensile strength of 909.36 MPa and an elongation of 1.21%.Compared to the welded samples without Ta,the tensile strength and elongation increased by 153.01 MPa and 0.53%,respectively.Grain refnement and increased dislocation density were the main reasons for the improved mechanical properties.However,excessive Ta content led to signifcant the intragrain misorientation,increasing the joint’s anisotropy and causing uneven deformation during tensile testing.Therefore,further addition of Ta did not substantially enhance the tensile properties of the joint.Additionally,the paper provides a detailed analysis of the low elongation observed in the joint.After welding,dislocations were neatly arranged in the FZ,forming numerous parallel dislocation walls,leading to local stress concentration and accelerating crack initiation and propagation.Consequently,the elongation at the weld was lower than that of the base metal(BM).This research ofers a new approach to improve the mechanical properties of Ti2AlNb alloy during welding. 展开更多
关键词 Ti_(2)AlNb base alloy Tungsten inert gas(TIG)welding Grain refnement Ta microalloying Constitutional undercooling
原文传递
Peritectic solidification under high undercooling conditions 被引量:11
19
作者 Chongde Cao Xiaoyu Lu Bingbo Wei 《Chinese Science Bulletin》 SCIE EI CAS 1999年第14期1338-1343,共6页
The solidification characteristics of highly undercooled Cu-7.77% Co peritectic alloy has been examined by glass fluxing technique. The obtained undercoolings vary from 93 to 203 K(0.14 T_L). It is found that the a(Co... The solidification characteristics of highly undercooled Cu-7.77% Co peritectic alloy has been examined by glass fluxing technique. The obtained undercoolings vary from 93 to 203 K(0.14 T_L). It is found that the a(Co) phase always nucleates and grows preferentially, which is followed by peritectic transformation. This means that the peritectic phase cannot form directly, even though the alloy melt is undercooled to a temperature far below its peritectic point. The maximum recalescence temperature measured experimentally decreases as undercooling increases, which is lower than the thermodynamic calculation result owing to the actual non-adiabatic nature of recalescence process. The dendritic fragmentation of primary α(Co) phase induced by high undercooling is found to enhance the completion of peritectic transformation. In addition, the LKT/BCT dendrite growth model is modified in order to make it applicable to those binary alloy systems with seriously curved liquidus and solidus lines. The dendrite 展开更多
关键词 PERITECTIC SOLIDIFICATION undercooling NUCLEATION RECALESCENCE DENDRITE growth.
在线阅读 下载PDF
Rapid growth of ternary eutectic un der high undercooling conditions 被引量:10
20
作者 RUAN Ying CAO Chongde WEI Bingbo 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2004年第6期717-728,共12页
Rapid solidification of bulk Ag42.4Cu21.6Sb36 ternary eutectic alloy is accomplished by glass fluxing method,during which the maximum undercooling attains 114 K (0.16 TE). Under high undercooling conditions,the ternar... Rapid solidification of bulk Ag42.4Cu21.6Sb36 ternary eutectic alloy is accomplished by glass fluxing method,during which the maximum undercooling attains 114 K (0.16 TE). Under high undercooling conditions,the ternary eutectic consists ofε (Ag3Sb),(Sb)and θ(Cu2Sb)phases,instead of (Ag),(Sb)and θphases as predicted by the phase diagram.In the sample of small undercooling,the alloy microstructure is characterized by the mixture of primary θ(Cu2Sb),(ε+θ) and (ε+Sb) pseudobinary eutectics,and regular (ε+θ+Sb) ternary eutectic.With the increase of undercooling, θ (Cu2Sb) primary phase and pseudobinary eutectics disappear gradually,and ternary eutectic transfers from regular to anomalous structure.When undercooling exceeds 102 K,anomalous (ε+θ+Sb) ternary eutectic is the unique microstructure.Competitive nucleation and growth of these three eutectic phases is the main cause for the formation of complex growth morphologies.Based on the current experiments and theoretical calculations,it can be concluded that the intermetallic compound phaseθ(Cu2Sb) is the leading nucleating phase. 展开更多
关键词 EUTECTIC growth CRYSTAL nucleation high undercooling TERNARY eutectic.
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部