A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlat...A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlation between interval parameters is defined by the multidimensional parallelepiped model which is convenient to describe the correlative and independent interval variables in a unified framework. The original interval variables with correlation are transformed into the standard space without correlation,and then the relationship between the original variables and the standard interval variables is obtained. The expressions of four basic interval arithmetic operations, namely addition, subtraction, multiplication, and division, are given in the standard space. Finally, several numerical examples and a two-step bar are used to demonstrate the effectiveness of the proposed method.展开更多
Urban electricity and heat networks(UEHN)consist of the coupling and interactions between electric power systems and district heating systems,in which the geographical and functional features of integrated energy syst...Urban electricity and heat networks(UEHN)consist of the coupling and interactions between electric power systems and district heating systems,in which the geographical and functional features of integrated energy systems are demonstrated.UEHN have been expected to provide an effective way to accommodate the intermittent and unpredictable renewable energy sources,in which the application of stochastic optimization approaches to UEHN analysis is highly desired.In this paper,we propose a chance-constrained coordinated optimization approach for UEHN considering the uncertainties in electricity loads,heat loads,and photovoltaic outputs,as well as the correlations between these uncertain sources.A solution strategy,which combines the Latin Hypercube Sampling Monte Carlo Simulation(LHSMCS)approach and a heuristic algorithm,is specifically designed to deal with the proposed chance-constrained coordinated optimization.Finally,test results on an UEHN comprised of a modified IEEE 33-bus system and a 32-node district heating system at Barry Island have verified the feasibility and effectiveness of the proposed framework.展开更多
The deployment of dynamic reactive power sourcecan effectively improve the voltage performance after a disturbance for a power system with increasing wind power penetration level and ubiquitous induction loads.To impr...The deployment of dynamic reactive power sourcecan effectively improve the voltage performance after a disturbance for a power system with increasing wind power penetration level and ubiquitous induction loads.To improve the voltage stability of the power system,this paper proposes an adaptive many-objective robust optimization model to deal with thedeployment issue of dynamic reactive power sources.Firstly,two metrics are adopted to assess the voltage stability of the system at two different stages,and one metric is proposed to assess the tie-line reactive power flow.Then,a robustness index isdeveloped to assess the sensitivity of a solution when subjectedto operational uncertainties,using the estimation of acceptablesensitivity region(ASR)and D-vine Copula.Five objectives areoptimized simultaneously:①total equipment investment;②adaptive short-term voltage stability evaluation;③tie-line power flow evaluation;④prioritized steady-state voltage stabilityevaluation;and⑤robustness evaluation.Finally,an anglebased adaptive many-objective evolutionary algorithm(MaOEA)is developed with two improvements designed for the application in a practical engineering problem:①adaptive mutationrate;and②elimination procedure without a requirement for athreshold value.The proposed model is verified on a modifiedNordic 74-bus system and a real-world power system.Numerical results demonstrate the effectiveness and efficiency of theproposed model.展开更多
We developed a least squares fitter used for extracting expected physics parameters from the correlated experimental data in high energy physics. This fitter considers the correlations among the observables and handle...We developed a least squares fitter used for extracting expected physics parameters from the correlated experimental data in high energy physics. This fitter considers the correlations among the observables and handles the nonlinearity using linearization during the X2 minimization. This method can naturally be extended to the analysis with external inputs. By incorporating with Lagrange multipliers, the fitter includes constraints among the measured observables and the parameters of interest. We applied this fitter to the study of the D^-D~ mixing parameters as the test-bed based on MC simulation. The test results show that the fitter gives unbiased estimators with correct uncertainties and the approach is credible.展开更多
基金supported by the National Natural Science Foundation for Excellent Young Scholars(Grant 51222502)the National Natural Science Foundation of China(Grant 11172096)the Funds for State Key Laboratory of Construction Machinery(SKLCM2014-1)
文摘A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlation between interval parameters is defined by the multidimensional parallelepiped model which is convenient to describe the correlative and independent interval variables in a unified framework. The original interval variables with correlation are transformed into the standard space without correlation,and then the relationship between the original variables and the standard interval variables is obtained. The expressions of four basic interval arithmetic operations, namely addition, subtraction, multiplication, and division, are given in the standard space. Finally, several numerical examples and a two-step bar are used to demonstrate the effectiveness of the proposed method.
基金This work was supported in part by Natural Science Foundation of Jiangsu Province,China(No.BK20171433)in part by Science and Technology Project of State Grid Jiangsu Electric Power Corporation,China(No.J2018066).
文摘Urban electricity and heat networks(UEHN)consist of the coupling and interactions between electric power systems and district heating systems,in which the geographical and functional features of integrated energy systems are demonstrated.UEHN have been expected to provide an effective way to accommodate the intermittent and unpredictable renewable energy sources,in which the application of stochastic optimization approaches to UEHN analysis is highly desired.In this paper,we propose a chance-constrained coordinated optimization approach for UEHN considering the uncertainties in electricity loads,heat loads,and photovoltaic outputs,as well as the correlations between these uncertain sources.A solution strategy,which combines the Latin Hypercube Sampling Monte Carlo Simulation(LHSMCS)approach and a heuristic algorithm,is specifically designed to deal with the proposed chance-constrained coordinated optimization.Finally,test results on an UEHN comprised of a modified IEEE 33-bus system and a 32-node district heating system at Barry Island have verified the feasibility and effectiveness of the proposed framework.
基金supported by the International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program)(No.YJ20210337)the Fundamental Research Funds for the Central Universities (No.2022CDJXY-007)。
文摘The deployment of dynamic reactive power sourcecan effectively improve the voltage performance after a disturbance for a power system with increasing wind power penetration level and ubiquitous induction loads.To improve the voltage stability of the power system,this paper proposes an adaptive many-objective robust optimization model to deal with thedeployment issue of dynamic reactive power sources.Firstly,two metrics are adopted to assess the voltage stability of the system at two different stages,and one metric is proposed to assess the tie-line reactive power flow.Then,a robustness index isdeveloped to assess the sensitivity of a solution when subjectedto operational uncertainties,using the estimation of acceptablesensitivity region(ASR)and D-vine Copula.Five objectives areoptimized simultaneously:①total equipment investment;②adaptive short-term voltage stability evaluation;③tie-line power flow evaluation;④prioritized steady-state voltage stabilityevaluation;and⑤robustness evaluation.Finally,an anglebased adaptive many-objective evolutionary algorithm(MaOEA)is developed with two improvements designed for the application in a practical engineering problem:①adaptive mutationrate;and②elimination procedure without a requirement for athreshold value.The proposed model is verified on a modifiedNordic 74-bus system and a real-world power system.Numerical results demonstrate the effectiveness and efficiency of theproposed model.
基金Ministry of Science and Technology of China(2009CB825200)Joint Funds of National Natural Science Foundation of China(11079008)Natural Science Foundation of China (11275266) and SRF for ROCS of SEM
文摘We developed a least squares fitter used for extracting expected physics parameters from the correlated experimental data in high energy physics. This fitter considers the correlations among the observables and handles the nonlinearity using linearization during the X2 minimization. This method can naturally be extended to the analysis with external inputs. By incorporating with Lagrange multipliers, the fitter includes constraints among the measured observables and the parameters of interest. We applied this fitter to the study of the D^-D~ mixing parameters as the test-bed based on MC simulation. The test results show that the fitter gives unbiased estimators with correct uncertainties and the approach is credible.