This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the unc...This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the uncertainty associated with the positions of the agents,which may experience drift or disturbances during the target localization process.Initially,we derive the Cramer-Rao lower bound(CRLB)of the target position as the primary analytical metric.Subsequently,we establish the necessary and sufficient conditions for the optimal placement of agents.Based on these conditions,we analyze the maximal allowable agent position error for an expected mean squared error(MSE),providing valuable guidance for the selection of agent positioning sensors.The analytical findings are further validated through simulation experiments.展开更多
The objective of this paper is to investigate the consensus of the multi-agent systems w/th nonlinear coupling function and external disturbances. The disturbance includes two parts, one part is supposed to be generat...The objective of this paper is to investigate the consensus of the multi-agent systems w/th nonlinear coupling function and external disturbances. The disturbance includes two parts, one part is supposed to be generated by an exogenous system, which is not required to be neutrally stable as in the output regulation theory, the other part is the modeling uncertainty in the exogenous disturbance system. A novel composite disturbance observer based control (DOBC) and H∞ control scheme is presented so that the disturbance with the exogenous system can be estimated and compensated and the consensus of the multi-agent systems with fixed and switching graph can be reached by using Hoo control law. Simulations demonstrate the advantages of the proposed DOBC and H∞ control scheme.展开更多
In this paper, a consensus algorithm of multi-agent second-order dynamical systems with nonsymmetric interconnection and heterogeneous delays is studied. With the hypothesis of directed weighted topology graph with a ...In this paper, a consensus algorithm of multi-agent second-order dynamical systems with nonsymmetric interconnection and heterogeneous delays is studied. With the hypothesis of directed weighted topology graph with a globally reachable node, decentralized consensus condition is obtained by applying generalized Nyquist criterion. For the systems with both communication and input delays, it is shown that the consensus condition is dependent on input delays but independent of communication delays.展开更多
Containment control of first-order multi-agent systems with uncertain topologies and communication timedelays is studied. Suppose system topologies are dynamically changed, a containment control algorithm with time-va...Containment control of first-order multi-agent systems with uncertain topologies and communication timedelays is studied. Suppose system topologies are dynamically changed, a containment control algorithm with time-varying delays is presented. The stability of the control algorithm is studied under the assumption that communication topologies are jointly-connected, and constraint condition of distributed containment control for delayed multi-agent systems is derived with the aid of Lyapunov–Krasovskii function. Simulation results are provided to prove the correctness and effectiveness of the conclusion.展开更多
In this paper,the bipartite consensus problem is studied for a class of uncertain high-order nonlinear multi-agent systems.A signed digraph is presented to describe the collaborative and competitive interactions among...In this paper,the bipartite consensus problem is studied for a class of uncertain high-order nonlinear multi-agent systems.A signed digraph is presented to describe the collaborative and competitive interactions among agents.For each agent with lower triangular structure,a time-varying gain compensator is first designed by relative output information of neighboring agents.Subsequently,a distributed controller with dynamic event-triggered mechanism is proposed to drive the bipartite consensus error to zero.It is worth noting that an internal dynamic variable is introduced in triggering function,which plays an essential role in excluding the Zeno behavior and reducing energy consumption.Furthermore,the dynamic event-triggered control protocol is developed for upper triangular multi-agent systems to realize the bipartite consensus without Zeno behavior.Finally,simulation examples are provided to illustrate the effectiveness of the presented results.展开更多
A great deal of stabilization criteria has been obtained from study of stabilizing interconnected systems. The results obtained are usually based on continuous systems by state feedback. In this paper, decentralized i...A great deal of stabilization criteria has been obtained from study of stabilizing interconnected systems. The results obtained are usually based on continuous systems by state feedback. In this paper, decentralized impulsive control is presented to stabilize a class of uncertain interconnected systems based on Lyapunov theory. The system under consideration involves parameter uncertainties and unknown nonlinear interactions among subsystems. Some new criteria of stabilization under impulsive control are established. Two numerical examples are offered to prove the effectiveness and practicality of the proposed method.展开更多
In this paper, the target aggregation is investigated for a multi-agent system consisting of second-order agents and multiple leaders. Sufficient conditions are proposed to make the agents approach the target set span...In this paper, the target aggregation is investigated for a multi-agent system consisting of second-order agents and multiple leaders. Sufficient conditions are proposed to make the agents approach the target set spanned by these moving leaders. With the condition on switching interconnection topologies, all mobile agents can asymptotically track the dynamical target set specified by multiple moving leaders with bounded error. Moreover, discussion on the case with static leaders is also given.展开更多
A general class of non-linear large-scale interconnected systems is considered,wherein each subsystem is comprised of a nominal part in a general strict-feedback-like structure and a set of appended dynamics.Parametri...A general class of non-linear large-scale interconnected systems is considered,wherein each subsystem is comprised of a nominal part in a general strict-feedback-like structure and a set of appended dynamics.Parametric and functional uncertainties and time delays are allowed throughout the overall system structure including the nominal strictfeedback-like parts and appended dynamics of each subsystem as well as the non-linear subsystem interconnections.The controller design is based on the dual dynamic highgain scaling technique and provides a robust adaptive delay-independent globally stabilising decentralised output-feedback controller.The disturbance attenuation properties of the proposed output-feedback decentralised controller to an exogenous disturbance input are also analysed and specific conditions under which properties such as Input-toOutput-practical-Stability and asymptotic stabilisation are attained are also discussed.展开更多
文摘This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the uncertainty associated with the positions of the agents,which may experience drift or disturbances during the target localization process.Initially,we derive the Cramer-Rao lower bound(CRLB)of the target position as the primary analytical metric.Subsequently,we establish the necessary and sufficient conditions for the optimal placement of agents.Based on these conditions,we analyze the maximal allowable agent position error for an expected mean squared error(MSE),providing valuable guidance for the selection of agent positioning sensors.The analytical findings are further validated through simulation experiments.
基金Supported by the National Excellence Youth Science Foundation of China under Grant No.60925012the National Basic Research Science Program of China under Grant No.2012CB720000+3 种基金973 Programthe National Natural Science Foundation of China under Grant Nos.60875039,60904022,60805039,and 60774013the Science Foundation of China postdoctoral under Grant No.2011M500205the Natural Science Foundation of Shandong Province of China under Grant No.ZR2011FM017
文摘The objective of this paper is to investigate the consensus of the multi-agent systems w/th nonlinear coupling function and external disturbances. The disturbance includes two parts, one part is supposed to be generated by an exogenous system, which is not required to be neutrally stable as in the output regulation theory, the other part is the modeling uncertainty in the exogenous disturbance system. A novel composite disturbance observer based control (DOBC) and H∞ control scheme is presented so that the disturbance with the exogenous system can be estimated and compensated and the consensus of the multi-agent systems with fixed and switching graph can be reached by using Hoo control law. Simulations demonstrate the advantages of the proposed DOBC and H∞ control scheme.
基金supported by National Natural Science Foundation of China (No. 60774016, No. 60875039, No. 60904022)the Science Foundation of Education Office of Shandong Province of China (No. J08LJ01)Internal Visiting Scholar Object for Excellence Youth Teacher of the College of Shandong Province of China
文摘In this paper, a consensus algorithm of multi-agent second-order dynamical systems with nonsymmetric interconnection and heterogeneous delays is studied. With the hypothesis of directed weighted topology graph with a globally reachable node, decentralized consensus condition is obtained by applying generalized Nyquist criterion. For the systems with both communication and input delays, it is shown that the consensus condition is dependent on input delays but independent of communication delays.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61273152,61304052,51407088the Science Foundation of Education Office of Shandong Province of China under Grant Nos.ZR2011FM07,BS2015DX018
文摘Containment control of first-order multi-agent systems with uncertain topologies and communication timedelays is studied. Suppose system topologies are dynamically changed, a containment control algorithm with time-varying delays is presented. The stability of the control algorithm is studied under the assumption that communication topologies are jointly-connected, and constraint condition of distributed containment control for delayed multi-agent systems is derived with the aid of Lyapunov–Krasovskii function. Simulation results are provided to prove the correctness and effectiveness of the conclusion.
基金This work was supported by the National Natural Science Foundation of China(Nos.61973189,62073190)the Research Fund for the Taishan Scholar Project of Shandong Province of China(No.ts20190905)the Natural Science Foundation of Shandong Province of China(No.ZR2020ZD25).
文摘In this paper,the bipartite consensus problem is studied for a class of uncertain high-order nonlinear multi-agent systems.A signed digraph is presented to describe the collaborative and competitive interactions among agents.For each agent with lower triangular structure,a time-varying gain compensator is first designed by relative output information of neighboring agents.Subsequently,a distributed controller with dynamic event-triggered mechanism is proposed to drive the bipartite consensus error to zero.It is worth noting that an internal dynamic variable is introduced in triggering function,which plays an essential role in excluding the Zeno behavior and reducing energy consumption.Furthermore,the dynamic event-triggered control protocol is developed for upper triangular multi-agent systems to realize the bipartite consensus without Zeno behavior.Finally,simulation examples are provided to illustrate the effectiveness of the presented results.
文摘A great deal of stabilization criteria has been obtained from study of stabilizing interconnected systems. The results obtained are usually based on continuous systems by state feedback. In this paper, decentralized impulsive control is presented to stabilize a class of uncertain interconnected systems based on Lyapunov theory. The system under consideration involves parameter uncertainties and unknown nonlinear interactions among subsystems. Some new criteria of stabilization under impulsive control are established. Two numerical examples are offered to prove the effectiveness and practicality of the proposed method.
基金supported in part by the National Natural Science Foundation of China under Grant Nos. 60874018,60736022,and 60821091
文摘In this paper, the target aggregation is investigated for a multi-agent system consisting of second-order agents and multiple leaders. Sufficient conditions are proposed to make the agents approach the target set spanned by these moving leaders. With the condition on switching interconnection topologies, all mobile agents can asymptotically track the dynamical target set specified by multiple moving leaders with bounded error. Moreover, discussion on the case with static leaders is also given.
基金This work was supported in part by the NSF[grant number ECS-0501539].
文摘A general class of non-linear large-scale interconnected systems is considered,wherein each subsystem is comprised of a nominal part in a general strict-feedback-like structure and a set of appended dynamics.Parametric and functional uncertainties and time delays are allowed throughout the overall system structure including the nominal strictfeedback-like parts and appended dynamics of each subsystem as well as the non-linear subsystem interconnections.The controller design is based on the dual dynamic highgain scaling technique and provides a robust adaptive delay-independent globally stabilising decentralised output-feedback controller.The disturbance attenuation properties of the proposed output-feedback decentralised controller to an exogenous disturbance input are also analysed and specific conditions under which properties such as Input-toOutput-practical-Stability and asymptotic stabilisation are attained are also discussed.