期刊文献+
共找到3,040篇文章
< 1 2 152 >
每页显示 20 50 100
Theoretical and Experimental Investigations on Thickness Uniformity in Double-sided Lapping
1
作者 Zhuolin Cai Zhe Yang +4 位作者 Bo Pan Jiale Lian Lianlin Wang Sergei Pronkevich Jiang Guo 《Chinese Journal of Mechanical Engineering》 2025年第3期151-163,共13页
The double-sided lapping process is extensively employed in the manufacturing of wafers,optical windows,and seal rings due to its high efficiency and ability to achieve precise flatness.However,limited research has ex... The double-sided lapping process is extensively employed in the manufacturing of wafers,optical windows,and seal rings due to its high efficiency and ability to achieve precise flatness.However,limited research has explored the thickness uniformity among different workpieces after double-sided lapping,and the underlying mechanism remains unclear.To address the demand for higher precision,this paper first analyzed the relative kinematic model between the workpiece and the lapping plate to clarify the causes of thickness variations among workpieces after double-sided lapping.Subsequently,a finite element method(FEM)model was developed to account for the pressure distribution on the workpiece surfaces at the initial stage of the process.The results indicate that the number of workpieces influences the final thickness variation.Then,various sets of thin copper plates with different thicknesses were lapped,and the findings revealed that five copper plates processed simultaneously exhibited more uniform thickness compared to the three plates.The experimental results align well with the theoretical analysis.Ultimately,a thickness variation of less than 6μm was achieved on five copper plates measuringΦ100×2.9 mm.This study presents a comprehensive analysis of the mechanisms influencing thickness uniformity in the double-sided lapping process and provides practical guidelines for optimizing the process to achieve stringent precision standards in industrial applications. 展开更多
关键词 Double-sided lapping Thickness uniformity Theoretical analysis FEM Thin copper plate
在线阅读 下载PDF
In-process cutting temperature measurement for ultra-precision machining:a comprehensive review and future perspectives
2
作者 Shiquan LIU Yuqi DING +4 位作者 Kaiyang XIA Hui LI Liang AN Zhongwei LI Yuan-Liu CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第9期853-875,共23页
With the widespread adoption of ultra-precision machining(UPM)in manufacturing,accurately monitoring the temperature within micro-scale cutting zones has become crucial for ensuring machining quality and tool longevit... With the widespread adoption of ultra-precision machining(UPM)in manufacturing,accurately monitoring the temperature within micro-scale cutting zones has become crucial for ensuring machining quality and tool longevity.This review comprehensively evaluates modern in-process cutting temperature measurement methods,comparing conventional approaches and emerging technologies.Thermal conduction-based and radiation-based measurement paradigms are analyzed in terms of their merits,limitations,and domain-specific applicability,particularly with regard to the unique challenges involving micro-scale cutting zones in UPM.Special emphasis is placed on micro-scale sensor-integrated tools and self-sensing tools that enable real-time thermal monitoring at cutting edges.Furthermore,we explore thermal monitoring and management techniques for atomic and close-to-atomic scale manufacturing(ACSM),as well as the transformative potential of emerging technologies like artificial intelligence(AI),internet of things(IoT),and data fusion for machining temperature measurement.This review may serve as a reference for UPM cutting temperature measurement research,helping foster the development of optimized process control technologies. 展开更多
关键词 Cutting temperature measurement ultra-precision machining(UPM) In-process monitoring Smart sensors Micro-scale cutting zones
原文传递
Ultra-precision positioning control technique based on neural network 被引量:4
3
作者 张金龙 余玲玲 刘京南 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期130-133,共4页
Due to the non-linearity behavior of the precision positioning system, an accurate mathematical control model is difficult to set up, a novel control method for ultra-precision alignment is presented. This method reli... Due to the non-linearity behavior of the precision positioning system, an accurate mathematical control model is difficult to set up, a novel control method for ultra-precision alignment is presented. This method relies on neural network and alignment marks that are in the form of 100μm pitch gratings. The 0-th order Moire signals' intensity and its intensity rate are chosen as input variables of the neural network. The characteristics of the neural network make it possible to perform self-training and self-adjusting so as to achieve automatic precision alignment. A neural network model for precision positioning is set up. The model is composed of three neural layers, i.e. input layer, hidden layer and output layer. Driving signal is obtained by mapping Moire signals' intensity and its intensity rate. The experimental results show that neural network control for precision positioning can effectively improve positioning speed with high accuracy. It has the advantages of fast, stable response and good robustness. The device based on neural network can achieve the positioning accuracy of ± 0. 5μm. 展开更多
关键词 Moire signals ultra-precision alignment neural network intelligent control
在线阅读 下载PDF
Ultra-precision alignment technique based on modified Moiré signals 被引量:2
4
作者 张金龙 陈从颜 +1 位作者 余玲玲 刘京南 《Journal of Southeast University(English Edition)》 EI CAS 2005年第1期16-19,共4页
A novel method for automatic ultra-precision alignment is presented.This method relies on the modified Moiré technique,and alignment marks are used in the form of gratings.The modified Moiré technique can ef... A novel method for automatic ultra-precision alignment is presented.This method relies on the modified Moiré technique,and alignment marks are used in the form of gratings.The modified Moiré technique can effectively improve detecting sensitivity of signals and simplify the control system by using only one pair of laser-Moiré sensors.We present the mathematical model and simulation results of diffracting two gratings.The effect of various parameters on Moiré signals is studied theoretically and experimentally,and the results are found to be consistent.A computer controlled alignment device using one pair of Moiré sensors is designed.The device can achieve a fully automatic precision alignment by the modified Moiré signal.The experimental result shows that the alignment device can obtain the resolution of 5 nm and the positioning accuracy of ±0 5 μm. 展开更多
关键词 Moiré signal ultra-precision alignment modified Moiré technique automatic control
在线阅读 下载PDF
Damage mechanisms during lapping and mechanical polishing CdZnTe wafers 被引量:2
5
作者 LI Yan,KANG Renke,GAO Hang,and WU Dongjiang Key Laboratory for Precision and Non-Traditional Machining Technology (Ministry of Education),Dalian University of Technology,Dalian 116024,China 《Rare Metals》 SCIE EI CAS CSCD 2010年第3期276-279,共4页
CdZnTe wafers were machined by lapping and mechanical polishing processes,and their surface and subsurface damages were investigated.The surface damages are mainly induced by three-body abrasive wear and embedded abra... CdZnTe wafers were machined by lapping and mechanical polishing processes,and their surface and subsurface damages were investigated.The surface damages are mainly induced by three-body abrasive wear and embedded abrasive wear during lapping process.A new damage type,which is induced by the indentation of embedded abrasives,is found in the subsurface.When a floss pad is used to replace the lapping plate during machining,the surface damage is mainly induced by two-body abrasive and three-body abrasive wear,and the effect of embedded abrasives on the surface is greatly weakened.Moreover,this new damage type nearly disappears on the subsurface. 展开更多
关键词 lapping mechanical polishing WAFERS SURFACE SUBSURFACE ABRASIVE
在线阅读 下载PDF
Optimization experiment on eccentric lapping of cylindrical rollers 被引量:2
6
作者 Jia Su Julong Yuan +1 位作者 Sen Zhang Binghai Lv 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2018年第3期197-204,共8页
Cylindrical rollers are important elements of bearings,and their machining accuracy and consistency affect the bearing quality.Using a GCr15 cylindrical roller ofФ11×12 as the processing object in this study,the... Cylindrical rollers are important elements of bearings,and their machining accuracy and consistency affect the bearing quality.Using a GCr15 cylindrical roller ofФ11×12 as the processing object in this study,the effects of loading pressure,abrasive concentration,and speed combination on cylindrical roller machining precision were investigated using the orthogonal experimental design method on a double-side eccentric pendulum lapping and polishing machine.The machining parameters of the lapping stage were optimized,and the lapping optimal process parameters were determined by S/N response analysis and analysis of variance(ANOVA).The results show that when the experiment was optimized using loading pressure of 10 N/roller,abrasive concentrationof 20.0 wt%,and rotational speed combination,the material removal rate(MRR)of cylindrical roller reached 0.0896μm/min;the average roughness of the batch decreased from 0.056μm to 0.027μm,51.8%lower than the original batch average roughness,and the deviation decreased from the initial 0.022μm to 0.014μm;the batch average roundness error decreased from 0.47μm to 0.28μm,40.4%lower than the original batch average roundness error,and the deviation decreased from the initial 0.19μm to 0.038μm;and the batch average diameter variation decreased from 4.5μm to about 3.6μm,20%lower than the original batch average diameter variation.The double-side eccentric lapping of cylinder rollers does not only lead to improvement in the surface quality and shape accuracy of rollers,but also improvement in the batch consistency. 展开更多
关键词 Cylindrical ROLLER ECCENTRIC PENDULUM type Orthogonal EXPERIMENT lapping BATCH consistency
在线阅读 下载PDF
Modeling and Validation of Indentation Depth of Abrasive Grain into Lithium Niobate Wafer by Fixed-Abrasive Lapping 被引量:2
7
作者 Zhu Nannan Zhu Yongwei +3 位作者 Xu Jun Wang Zhankui Xu Sheng Zuo Dunwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第1期97-104,共8页
The prediction of indentation depth of abrasive grain in hydrophilic fixed-abrasive(FA)lapping is crucial for controlling material removal rate and surface quality of the work-piece being machined.By applying the theo... The prediction of indentation depth of abrasive grain in hydrophilic fixed-abrasive(FA)lapping is crucial for controlling material removal rate and surface quality of the work-piece being machined.By applying the theory of contact mechanics,a theoretical model of the indentation depth of abrasive grain was developed and the relationships between indentation depth and properties of contact pairs and abrasive back-off were studied.Also,the average surface roughness(Ra)of lapped wafer was approximately calculated according to the obtained indentation depth.To verify the rationality of the proposed model,a series of lapping experiments on lithium niobate(LN)wafers were carried out,whose average surface roughness Ra was measured by atomic force microscope(AFM).The experimental results were coincided with the theoretical predictions,verifying the rationality of the proposed model.It is concluded that the indentation depth of the fixed abrasive was primarily affected by the applied load,wafer micro hardness and pad Young′s modulus and so on.Moreover,the larger the applied load,the more significant the back-off of the abrasive grain.The model established in this paper is helpful to the design of FA pad and its machining parameters,and the prediction of Ra as well. 展开更多
关键词 fixed-abrasive lapping INDENTATION DEPTH ABRASIVE back-off lithium NIOBATE WAFER average surface roughness
在线阅读 下载PDF
INFLUENCE OF WHEEL STRUCTURAL PARAMETERS ON MACHINING ACCURACY OF ULTRA-PRECISION PLANE HONING 被引量:4
8
作者 Guo Yinbiao Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, ChinaHu Jianyu Zheng Xiaoguang Katsuo SyojiXiamen University Chongqing University Tohoku University, Japan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第4期344-347,共4页
A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle ... A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle and pattern structures are analyzed andoptimization machining parameters are obtained. By calculating effective cutting length on thesurface of workpiece cut by wheel's abrasive and the orbit of one point on the surface of workpiececontacting with wheel, the wear coefficient of different kinds of wheels and accuracy coefficient ofworkpiece machined by corresponding wheels are obtained. Furthermore, the simulation results showthat the optimal pattern structure of wheel turns out to have lower wheel wear and higher machiningaccuracy. 展开更多
关键词 fine grit diamond wheel ultra-precision plane honing machining accuracy wheel wear
在线阅读 下载PDF
MINITYPE MACHINING SYSTEM FOR DIAMOND LAPPING & POLISHING BY USING BRUSHLESS DIRECT CURRENT MOTOR AS PRECISE SPINDLE 被引量:1
9
作者 FU Huinan CHEN Dongsheng ZHAO Yong LIN Binquan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期27-30,共4页
A minitype precise spindle system which can machine precisely and stably in the process of diamond lapping and polishing is designed. In such minitype spindle system, the brushless DC spindle motor is used to drive th... A minitype precise spindle system which can machine precisely and stably in the process of diamond lapping and polishing is designed. In such minitype spindle system, the brushless DC spindle motor is used to drive the lapping finish table, which is built with fluid dynamic bearings. Some measures have been taken to make the lapping system dynamic balance, and a servo controller which can adjust the speed of motor from 1200 r/min to 5400 r/min is designed. Experiments show that the spindle system is reliable and stable for diamond polishing, and the detection results by atomic force microscope(AFM) show that the surfaces of diamond edge's Ra is 6.725 nm and whole diamond average Ra is 3.25 nm. 展开更多
关键词 DIAMOND lapping polishing Spindle system
在线阅读 下载PDF
Dynamic Accuracy Design Method of Ultra-precision Machine Tool 被引量:4
10
作者 Guo-Da Chen Ya-Zhou Sun +3 位作者 Fei-Hu Zhang Li-Hua Lu Wan-Qun Chen Nan Yu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第1期167-175,共9页
Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable... Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable and the related research is rarely available. In light of above reasons, a DAD method of ultra-precision machine tool is proposed in this paper, which is based on the frequency domain error allocation.The basic procedure and enabling knowledge of the DAD method is introduced. The application case of DAD method in the ultra-precision flycutting machine tool for KDP crystal machining is described to show the procedure detailedly. In this case, the KDP workpiece surface has the requirements in four different spatial frequency bands, and the emphasis for this study is put on the middle-frequency band with the PSD specifications. The results of the application case basically show the feasibility of the proposed DAD method. The DAD method of ultra-precision machine tool can effectively minimize the technical risk and improve the machining reliability of the designed machine tool. This paper will play an important role in the design and manufacture of new ultra-precision machine tool. 展开更多
关键词 Dynamic accuracy design ultra-precision machine tool Frequency domain Error allocation
在线阅读 下载PDF
Interference and grinding characteristics in ultra-precision grinding of thin-walled complex structural component using a ball-end grinding wheel 被引量:3
11
作者 Tingzhang WANG Henan LIU +2 位作者 Chunya WU Jian CHEN Mingjun CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期192-207,共16页
As for ultra-precision grinding of difficult-to-process thin-walled complex components with ball-end grinding wheels,interference is easy to occur.According to screw theory and grinding kinematics,a mathematical model... As for ultra-precision grinding of difficult-to-process thin-walled complex components with ball-end grinding wheels,interference is easy to occur.According to screw theory and grinding kinematics,a mathematical model is established to investigate the interference and grinding characteristics of the ball-end wheel.The relationship between grinding wheel inclination angle,C axis rotation angle,grinding position angle and grinding wheel wear are analyzed.As the grinding wheel inclination angle increases,the C axis rotatable range decreases and the grinding position angle increases.The grinding position angle and wheel radius wear show a negative correlation with the C axis rotation angle.Therefore,a trajectory planning criteria for increasing grinding speed as much as possible under the premise of avoiding interference is proposed to design the grinding trajectory.Then grinding point distribution on the ball-end wheel is calculated,and the grinding characteristics,grinding speed and maximum undeformed chip thickness,are investigated.Finally,a complex structural component can be ground without interference,and surface roughness and profile accuracy are improved to 40.2 nm and 0.399 lm,compared with 556 nm and 3.427 lm before ultra-precision grinding.The mathematical model can provide theoretical guidance for the analysis of interference and grinding characteristics in complex components grinding to improve its grinding quality. 展开更多
关键词 ultra-precision grinding Complex component Ball-end grinding wheel INTERFERENCE Grinding characteristics
原文传递
High Speed Lapping of SiC Ceramic Material with Solid (Fixed) Abrasives 被引量:1
12
作者 张伟 杨鑫宏 +2 位作者 尚春民 胡孝勇 胡忠辉 《Defence Technology(防务技术)》 SCIE EI CAS 2005年第2期225-228,共4页
An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is the... An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of R_a 2.4?nm can be achieved. 展开更多
关键词 SiC ceramic MATERIAL high speed lapping with SOLID ABRASIVE machining in DUCTILE mode surface roughness
在线阅读 下载PDF
Subsurface Damage of Monocrystalline Germanium Wafers by Fixed and Free Abrasive Lappings 被引量:1
13
作者 Tang Suyang Sun Yuli +5 位作者 Wang gong Li Jun Xu gang Liu Zhigang Zhu Yongwei Zuo Dunwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期496-503,共8页
The subsurface damage(SSD)layers of monocrystalline germanium wafers lapped by three different ways were measured and compared by the method of nanoindentation and micro morphology.Three ways such as ice-fixed abrasiv... The subsurface damage(SSD)layers of monocrystalline germanium wafers lapped by three different ways were measured and compared by the method of nanoindentation and micro morphology.Three ways such as ice-fixed abrasive,thermosetting fixed abrasive and free abrasive lappings are adopted to lap monocrystalline germanium wafers.The SSD depth was measured by a nanoindenter,and the morphology of SSD layer was observed by an atomic force microscopy(AFM).The results show that the SSD layer of monocrystalline germanium wafer is mainly composed of soft corrosion layer and plastic scratch and crack growth layer.Compared with thermosetting fixed abrasive and free abrasive lappings,the SSD depth lapped with ice-fixed abrasive is shallower.Moreover,the SSD morphology of monocrystalline germanium wafer lapped with ice-fixed abrasive is superior to those of two other processing ways. 展开更多
关键词 subsurface damage(SSD) NANOINDENTATION fixed abrasive lapping monocrystalline germanium wafer
在线阅读 下载PDF
Systematic analysis of error sources during ultra-precision machining 被引量:1
14
作者 ZHENG De-zhi, LU Ze-sheng (Precision Engineering Research Institute, Harbin Institute of Technology, Harbin 150001, China) 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第S1期59-62,共4页
During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing deg... During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing degree of each factor is presented to provide orientation for error reduction and error compensation. 展开更多
关键词 ultra-precision MACHINE TOOLS ERROR SOURCES VIBRATION
在线阅读 下载PDF
Study of material removal behavior on R-plane of sapphire during ultra-precision machining based on modified slip-fracture model 被引量:2
15
作者 Suk Bum Kwon Aditya Nagaraj +1 位作者 Hae-Sung Yoon Sangkee Min 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2020年第3期141-155,共15页
In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting dir... In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting direction of resultant force. Anisotropic characteristics of crack morphology and ductility of machining depending on cutting direction were explained in detail with modified fracture cleavage and plastic deformation parameters. Through the analysis, it was concluded that crack morphologies were mainly determined by the interaction of multiple fracture systems activated while, critical depth of cut was determined by the dominant plastic deformation parameter. In addition to this, by using proportionality relationship between magnitude of resultant force and depth of cut in the ductile region, an empirical model for critical depth of cut was developed. 展开更多
关键词 Ductile-brittle transition Crack morphology Single crystal sapphire Deformation mechanism Orthogonal cutting ultra-precision machining
在线阅读 下载PDF
TWO-COORDINATE DUAL-SERVO CONTOURERROR COMPENSATION TECHNOLOGY FOR ULTRA-PRECISION MANUFACTURING 被引量:1
16
作者 Zhu Jianzhong Zhang Mingliang Li Shengyi (School of Mechatronics Engineering and Automation National University of Defense Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2000年第1期47-51,共5页
A technology of two-coordinate dual-servo(TCDS) is proposed. Using this technology which is based on error compensation, workpieces of higher contour accuracy could he turned on ultra-precision machine tool with Poor ... A technology of two-coordinate dual-servo(TCDS) is proposed. Using this technology which is based on error compensation, workpieces of higher contour accuracy could he turned on ultra-precision machine tool with Poor dynamic performances. The principle, constitute and operation of a TCDS system are described. Mathematical proof and experiments are achieved in addition. 展开更多
关键词 ultra-precision manufacturing Dual-servo Contour error
在线阅读 下载PDF
淫羊藿苷调控LAP自噬促进酒精抑制的MC3T3-E1细胞成骨分化 被引量:2
17
作者 曾麒 陈跃平 +2 位作者 宋世雷 赖渝 吴华华 《中国中药杂志》 北大核心 2025年第3期590-599,共10页
研究细胞自噬在MC3T3-E1细胞成骨诱导(生理)、酒精(alcohol,AL)干预(病理)分化过程中的影响机制,以及淫羊藿苷(icariin,ICA)对AL干预病理状态下MC3T3-E1细胞成骨分化的作用机制。成骨矿化结节染色鉴定该细胞可分化为成骨细胞。CCK-8实... 研究细胞自噬在MC3T3-E1细胞成骨诱导(生理)、酒精(alcohol,AL)干预(病理)分化过程中的影响机制,以及淫羊藿苷(icariin,ICA)对AL干预病理状态下MC3T3-E1细胞成骨分化的作用机制。成骨矿化结节染色鉴定该细胞可分化为成骨细胞。CCK-8实验筛选合适的AL和ICA浓度后,实验分为7组:完全培养基(complete medium,CM)组,成骨诱导培养基(osteogenic induction medium,OIM)组,OIM+0.25 mol·L^(-1)AL组,OIM+0.25 mol·L^(-1)AL+1×10^(-8)mol·L^(-1)ICA组,OIM+0.25 mol·L^(-1)AL+1×10^(-7)mol·L^(-1)ICA组,OIM+0.25 mol·L^(-1)AL+1×10^(-6)mol·L^(-1)ICA组,OIM+0.25 mol·L^(-1)AL+1×10^(-5)mol·L^(-1)ICA组,培养7 d。碱性磷酸酶(alkaline phosphatase,ALP)染色检测ALP相对面积,Western blot、RT-qPCR检测成骨、自噬相关蛋白及mRNA表达情况,活性氧(reactive oxygen species,ROS)染色检测ROS水平,细胞凋亡线粒体膜电位实验检测细胞凋亡情况。结果显示,ICA可上调AL干预后下调的ALP相对面积;AL下调成骨相关蛋白Wnt家族成员1(Wnt family member 1 gene,Wnt1)及成骨相关基因Wnt1、β-连环蛋白(β-catenin)、核心结合因子2(Runt-related transcription factor 2,Runx2)、骨保护素(osteoprotegerin,OPG)、ALP的表达水平,抑制细胞成骨分化,ICA可上调AL抑制的成骨相关蛋白及mRNA的表达水平,促进细胞成骨分化;AL抑制典型自噬,ICA调控Rubicon抑制LC3相关吞噬作用(LC3-associated phagocytosis,LAP)促进典型自噬;ICA下调AL诱导后上升的ROS水平;ICA下调AL干预后导致的成骨细胞凋亡。综上,ICA可调控Rubicon抑制LAP促进典型自噬,清除ROS减少细胞凋亡,最终通过调控Wnt/β-catenin信号通路促进AL干预病理状态下MC3T3-E1细胞的成骨分化。 展开更多
关键词 淫羊藿苷 酒精 成骨细胞 MC3T3-E1细胞 Wnt1/β-catenin通路 成骨分化 骨代谢失衡 自噬 lap
原文传递
Mesoplasticity Approach to Studies of the Cutting Mechanism in Ultra-precision Machining 被引量:2
18
作者 LEE WB Rongbin WANG Hao +2 位作者 TO Suet CHEUNG Chi Fai CHAN Chang Yuen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期219-228,共10页
There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plast... There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale. 展开更多
关键词 ultra-precision machining cutting mechanism mesoplasticity shear angle prediction size effect micro-cutting force variation high frequency tool-tip vibration
在线阅读 下载PDF
Weakening of the anisotropy of surface roughness in ultra-precision turning of single-crystal silicon 被引量:1
19
作者 Wang Minghai Wang Ben Zheng Yaohui 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1273-1280,共8页
Ultra-precision machining causes materials to undergo a greatly strained deformation process in a short period of time.The effect of shear strain rates on machining quality, in particular on surface anisotropy, is a t... Ultra-precision machining causes materials to undergo a greatly strained deformation process in a short period of time.The effect of shear strain rates on machining quality, in particular on surface anisotropy, is a topic deserving of research that has thus far been overlooked.This study analyzes the impact of the strain rate during the ultra-precision turning of single-crystal silicon on the anisotropy of surface roughness.Focusing on the establishment of cutting models considering the tool rake angle and the edge radius, this is the first research that takes into account the strain rate dislocation emission criteria in studying the effects of the edge radius, the cutting speed, and the cutting thickness on the plastic deformation of single-crystal silicon.The results of this study show that the uses of a smaller edge radius, faster cutting speeds, and a reduced cutting thickness can result in optimally uniform surface roughness, while the use of a very sharp cutting tool is essential when operating with smaller cutting thicknesses.A further finding is that insufficient plastic deformation is the major cause of increased surface roughness in the ultra-precision turning of brittle materials.On this basis, we propose that the capacity of single-crystal silicon to emit dislocations be improved as much as possible before brittle fracture occurs, thereby promoting plastic deformation and minimizing the anisotropy of surface roughness in the machined workpiece. 展开更多
关键词 Anisotropy of surface roughness Cutting speed Edge radius Single-crystal silicon Strain rate ultra-precision turning WEAKENING
原文传递
Stress-Induced Deformation of Thin Copper Substrate in Double-Sided Lapping 被引量:1
20
作者 Jiang Guo Zengxu He +4 位作者 Bo Pan Bin Wang Qian Bai Jinxing Kong Renke Kang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期80-89,共10页
Double-sided lapping is an precision machining method capable of obtaining high-precision surface.However,during the lapping process of thin pure copper substrate,the workpiece will be warped due to the influence of r... Double-sided lapping is an precision machining method capable of obtaining high-precision surface.However,during the lapping process of thin pure copper substrate,the workpiece will be warped due to the influence of residual stress,including the machining stress and initial residual stress,which will deteriorate the flatness of the workpiece and ultimately affect the performance of components.In this study,finite element method(FEM)was adopted to study the effect of residual stress-related on the deformation of pure copper substrate during double-sided lapping.Considering the initial residual stress of the workpiece,the stress caused by the lapping and their distribution characteristics,a prediction model was proposed for simulating workpiece machining deformation in lapping process by measuring the material removal rate of the upper and lower surfaces of the workpiece under the corresponding parameters.The results showed that the primary cause of the warping deformation of the workpiece in the doublesided lapping is the redistribution of initial residual stress caused by uneven material removal on the both surfaces.The finite element simulation results were in good agreement with the experimental results. 展开更多
关键词 Machining deformation Double-sided lapping Residual stress Finite element simulation
在线阅读 下载PDF
上一页 1 2 152 下一页 到第
使用帮助 返回顶部