Knowledge graphs convey precise semantic information that can be effectively interpreted by neural networks,and generating descriptive text based on these graphs places significant emphasis on content consistency.Howe...Knowledge graphs convey precise semantic information that can be effectively interpreted by neural networks,and generating descriptive text based on these graphs places significant emphasis on content consistency.However,knowledge graphs are inadequate for providing additional linguistic features such as paragraph structure and expressive modes,making it challenging to ensure content coherence in generating text that spans multiple sentences.This lack of coherence can further compromise the overall consistency of the content within a paragraph.In this work,we present the generation of scientific abstracts by leveraging knowledge graphs,with a focus on enhancing both content consistency and coherence.In particular,we construct the ACL Abstract Graph Dataset(ACL-AGD)which pairs knowledge graphs with text,incorporating sentence labels to guide text structure and diverse expressions.We then implement a Siamese network to complement and concretize the entities and relations based on paragraph structure by accomplishing two tasks:graph-to-text generation and entity alignment.Extensive experiments demonstrate that the logical paragraphs generated by our method exhibit entities with a uniform position distribution and appropriate frequency.In terms of content,our method accurately represents the information encoded in the knowledge graph,prevents the generation of irrelevant content,and achieves coherent and non-redundant adjacent sentences,even with a shared knowledge graph.展开更多
The Heterogeneous Capacitated Vehicle Routing Problem(HCVRP),which involves efficiently routing vehicles with diverse capacities to fulfill various customer demands at minimal cost,poses an NP-hard challenge in combin...The Heterogeneous Capacitated Vehicle Routing Problem(HCVRP),which involves efficiently routing vehicles with diverse capacities to fulfill various customer demands at minimal cost,poses an NP-hard challenge in combinatorial optimization.Recently,reinforcement learning approaches such as 2D Array Pointer Networks(2D-Ptr)have demonstrated remarkable speed in decision-making by modeling multiple agents’concurrent choices as a sequence of consecutive actions.However,these learning-based models often struggle with generalization,meaning they cannot seamlessly adapt to new scenarios with varying numbers of vehicles or customers without retraining.Inspired by the potential of multi-teacher knowledge distillation to harness diverse knowledge from multiple sources and craft a comprehensive student model,we propose to enhance the generalization capability of 2D-Ptr through Multiple Teacher-forcing Knowledge Distillation(MTKD).We initially train 12 unique 2D-Ptr models under various settings to serve as teacher models.Subsequently,we randomly sample a teacher model and a batch of problem instances,focusing on those where the chosen teacher performed best.This teacher model then solves these instances,generating high-reward action sequences to guide knowledge transfer to the student model.We conduct rigorous evaluations across four distinct datasets,each comprising four HCVRP instances of varying scales.Our empirical findings underscore the proposed method superiority over existing learning-based methods in terms of both computational efficiency and solution quality.展开更多
Due to the necessity for lightweight and efficient network models, deploying semantic segmentation models on mobile robots (MRs) is a formidable task. The fundamental limitation of the problem lies in the training per...Due to the necessity for lightweight and efficient network models, deploying semantic segmentation models on mobile robots (MRs) is a formidable task. The fundamental limitation of the problem lies in the training performance, the ability to effectively exploit the dataset, and the ability to adapt to complex environments when deploying the model. By utilizing the knowledge distillation techniques, the article strives to overcome the above challenges with the inheritance of the advantages of both the teacher model and the student model. More precisely, the ResNet152-PSP-Net model’s characteristics are utilized to train the ResNet18-PSP-Net model. Pyramid pooling blocks are utilized to decode multi-scale feature maps, creating a complete semantic map inference. The student model not only preserves the strong segmentation performance from the teacher model but also improves the inference speed of the prediction results. The proposed method exhibits a clear advantage over conventional convolutional neural network (CNN) models, as evident from the conducted experiments. Furthermore, the proposed model also shows remarkable improvement in processing speed when compared with light-weight models such as MobileNetV2 and EfficientNet based on latency and throughput parameters. The proposed KD-SegNet model obtains an accuracy of 96.3% and a mIoU (mean Intersection over Union) of 77%, outperforming the performance of existing models by more than 15% on the same training dataset. The suggested method has an average training time that is only 0.51 times less than same field models, while still achieving comparable segmentation performance. Hence, the semantic segmentation frames are collected, forming the motion trajectory for the system in the environment. Overall, this architecture shows great promise for the development of knowledge-based systems for MR’s navigation.展开更多
In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with l...In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations.In particular,resource-intensive embeddings often lead to increased computational costs,and may limit scalability and adaptability in practical environ-ments,such as in low-resource settings or real-world applications.This paper explores an approach to knowledge graph representation learning that leverages small,reserved entities and relation sets for parameter-efficient embedding.We introduce a hierarchical attention network designed to refine and maximize the representational quality of embeddings by selectively focusing on these reserved sets,thereby reducing model complexity.Empirical assessments validate that our model achieves high performance on the benchmark dataset with fewer parameters and smaller embedding dimensions.The ablation studies further highlight the impact and contribution of each component in the proposed hierarchical attention structure.展开更多
Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challeng...Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challenges related to data standardization,completeness,and accuracy,primarily due to the decen-tralized distribution of TCM resources.To address these issues,we developed a platform for TCM knowledge discovery(TCMKD,https://cbcb.cdutcm.edu.cn/TCMKD/).Seven types of data,including syndromes,formulas,Chinese patent drugs(CPDs),Chinese medicinal materials(CMMs),ingredients,targets,and diseases,were manually proofread and consolidated within TCMKD.To strengthen the integration of TCM with modern medicine,TCMKD employs analytical methods such as TCM data mining,enrichment analysis,and network localization and separation.These tools help elucidate the molecular-level commonalities between TCM and contemporary scientific insights.In addition to its analytical capabilities,a quick question and answer(Q&A)system is also embedded within TCMKD to query the database efficiently,thereby improving the interactivity of the platform.The platform also provides a TCM text annotation tool,offering a simple and efficient method for TCM text mining.Overall,TCMKD not only has the potential to become a pivotal repository for TCM,delving into the pharmaco-logical foundations of TCM treatments,but its flexible embedded tools and algorithms can also be applied to the study of other traditional medical systems,extending beyond just TCM.展开更多
With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precisio...With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precision and similarity measurement. This study, set against the backdrop of the shipping industry, combines top-down and bottom-up schema design strategies to achieve precise and flexible knowledge representation. The research adopts a semi-structured approach, innovatively constructing an adaptive schema generation mechanism based on reinforcement learning, which models the knowledge graph construction process as a Markov decision process. This method begins with general concepts, defining foundational industry concepts, and then delves into abstracting core concepts specific to the maritime domain through an adaptive pattern generation mechanism that dynamically adjusts the knowledge structure. Specifically, the study designs a four-layer knowledge construction framework, including the data layer, modeling layer, technology layer, and application layer. It draws on a mutual indexing strategy, integrating large language models and traditional information extraction techniques. By leveraging self-attention mechanisms and graph attention networks, it efficiently extracts semantic relationships. The introduction of logic-form-driven solvers and symbolic decomposition techniques for reasoning significantly enhances the model’s ability to understand complex semantic relationships. Additionally, the use of open information extraction and knowledge alignment techniques further improves the efficiency and accuracy of information retrieval. Experimental results demonstrate that the proposed method not only achieves significant performance improvements in knowledge graph retrieval within the shipping domain but also holds important theoretical innovation and practical application value.展开更多
Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches ofte...Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine.展开更多
Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ...Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.展开更多
Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose...Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units.展开更多
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me...The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.展开更多
With the ability to harness the power of big data,the digital twin(DT)technology has been increasingly applied to the modeling and management of structures and infrastructure systems,such as buildings,bridges,and powe...With the ability to harness the power of big data,the digital twin(DT)technology has been increasingly applied to the modeling and management of structures and infrastructure systems,such as buildings,bridges,and power distribution systems.Supporting these applications,an important family of methods are based on graphs.For DT applications in modeling and managing smart cities,large-scale knowledge graphs(KGs)are necessary to represent the complex interdependencies and model the urban infrastructure as a system of systems.To this end,this paper develops a conceptual framework:Automated knowledge Graphs for Complex Systems(AutoGraCS).In contrast to existing KGs developed for DTs,AutoGraCS can support KGs to account for interdependencies and statistical correlations across complex systems.The established KGs from AutoGraCS can then be easily turned into Bayesian networks for probabilistic modeling,Bayesian analysis,and adaptive decision supports.Besides,AutoGraCS provides flexibility in support of users’need to implement the ontology and rules when constructing the KG.With the user-defined ontology and rules,AutoGraCS can automatically generate a KG to represent a complex system consisting of multiple systems.The bridge network in Miami-Dade County,FL is used as an illustrative example to generate a KG that integrates multiple layers of data from the bridge network,traffic monitoring facilities,and flood water watch stations.展开更多
To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of to...To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of tools for supporting the sharing of knowledge and promoting NM collaboration. A 5-tuple based semantic information retrieval model is proposed, which includes the interoperation on the semantic layer, and a test process is given for this model. The recall ratio and the precision ratio of manufacturing knowledge retrieval are proved to be greatly improved by evaluation. Thus, a practical and reliable approach based on the semantic web is provided for solving the correlated concrete problems in regional networked manufacturing.展开更多
In order to simulate the real growing process, a new type of knowledge network growth mechanism based on local world connectivity is constructed. By the mean-field method, theoretical prediction of the degree distribu...In order to simulate the real growing process, a new type of knowledge network growth mechanism based on local world connectivity is constructed. By the mean-field method, theoretical prediction of the degree distribution of the knowledge network is given, which is verified by Matlab simulations. When the new added node's local world size is very small, the degree distribution of the knowledge network approximately has the property of scale-free. When the new added node's local world size is not very small, the degree distribution transforms from pure power-law to the power-law with an exponential tailing. And the scale-free index increases as the number of new added edges decreases and the tunable parameters increase. Finally, comparisons of some knowledge indices in knowledge networks generated by the local world mechanism and the global mechanism are given. In the long run, compared with the global mechanism, the local world mechanism leads the average knowledge levels to slower growth and brings homogenous phenomena.展开更多
Along with the development of information technologies such as mobile Internet,information acquisition technology,cloud computing and big data technology,the traditional knowledge engineering and knowledge-based softw...Along with the development of information technologies such as mobile Internet,information acquisition technology,cloud computing and big data technology,the traditional knowledge engineering and knowledge-based software engineering have undergone fundamental changes where the network plays an increasingly important role.Within this context,it is required to develop new methodologies as well as technical tools for network-based knowledge representation,knowledge services and knowledge engineering.Obviously,the term“network”has different meanings in different scenarios.Meanwhile,some breakthroughs in several bottleneck problems of complex networks promote the developments of the new methodologies and technical tools for network-based knowledge representation,knowledge services and knowledge engineering.This paper first reviews some recent advances on complex networks,and then,in conjunction with knowledge graph,proposes a framework of networked knowledge which models knowledge and its relationships with the perspective of complex networks.For the unique advantages of deep learning in acquiring and processing knowledge,this paper reviews its development and emphasizes the role that it played in the development of knowledge engineering.Finally,some challenges and further trends are discussed.展开更多
Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process f...Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process for future computer-aided DR applications, a prerequisite is to provide the measure for the DR knowledge. In this paper, a new knowledge network evaluation method for DR management is presented. The method characterizes the DR knowledge value from four perspectives, namely, the design rationale structure scale, association knowledge and reasoning ability, degree of design justification support and degree of knowledge representation conciseness. The DR knowledge comprehensive value is also measured by the proposed method. To validate the proposed method, different style of DR knowledge network and the performance of the proposed measure are discussed. The evaluation method has been applied in two realistic design cases and compared with the structural measures. The research proposes the DR knowledge evaluation method which can provide object metric and selection basis for the DR knowledge reuse during the product design process. In addition, the method is proved to be more effective guidance and support for the application and management of DR knowledge.展开更多
In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ...In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.展开更多
The non-linear relationship between parameters of rapidly solidified agingprocesses and mechancal and electrical properties of Cu-Cr-Zr alloy is available by using asupervised artificial neural network (ANN). A knowle...The non-linear relationship between parameters of rapidly solidified agingprocesses and mechancal and electrical properties of Cu-Cr-Zr alloy is available by using asupervised artificial neural network (ANN). A knowledge repository of rapidly solidified agingprocesses is established via sufficient data learning by the network. The predicted values of theneural network are in accordance with the tested data. So an effective measure for foreseeing andcontrolling the properties of the processing is provided.展开更多
Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results r...Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results revealed the spatial structure,composition structure,hierarchical structure,group structure,and control structure of Chinese city network,as well as its dynamic factors.The major findings are:1) the spatial pattern presents a diamond structure,in which Wuhan is the central city;2) although the invention patent knowledge network is the main part of the broader inter-city innovative cooperation network,it is weaker than the utility model patent;3) as the senior level cities,Beijing,Shanghai and the cities in the Zhujiang(Pearl) River Delta Region show a strong capability of both spreading and controlling technological knowledge;4) whilst a national technology alliance has preliminarily formed,regional alliances have not been adequately established;5) even though the cooperation level amongst weak connection cities is not high,such cities still play an important role in the network as a result of their location within ′structural holes′ in the network;and 6) the major driving forces facilitating inter-city technological cooperation are geographical proximity,hierarchical proximity and technological proximity.展开更多
Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information ...Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity matching.In this transformative process,the advancement of artificial intelligence and intelligent information services is invigorated.Meanwhile,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial success.This article embarks on a comprehensive journey through the last strides in the field of KG via machine learning.With a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge reasoning.Especially,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link prediction.Moreover,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction.展开更多
Different approaches have been established for applications of social and complex networks involving biological systems, passing through collaborative systems in knowledge networks and organizational systems. In this ...Different approaches have been established for applications of social and complex networks involving biological systems, passing through collaborative systems in knowledge networks and organizational systems. In this latter application, we highlight the studies focused on the diffusion of information and knowledge in networks. However, most of the time, the propagation of information in these networks and the resulting process of creation and diffusion of knowledge, have been studied from static perspectives. Additionally, the very concept of diffusion inevitably implies the inclusion of the temporal dimension, due to that it is an essentially dynamic process. Although static analysis provides an important perspective in structural terms, the behavioral view that reflects the evolution of the relationships of the members of these networks over time is best described by temporal networks. Thus, it is possible to analyze both the information flow and the structural changes that occur over time, which influences the dynamics of the creation and diffusion of knowledge. This article describes the computational modeling used to elucidate the creation and diffusion of knowledge in temporal networks formed to execute software maintenance and construction projects, for the period between 2007 and 2013, in the SERVIÇO FEDERAL DE PROCESSAMENTO DE DADOS (FEDERAL DATA PROCESSING SERVICE-SERPRO)—a public organization that provides information and communication technology services. The methodological approach adopted for the study was based on techniques for analyzing social and complex networks and on the complementary extensions that address temporal modeling of these networks. We present an exploratory longitudinal study that enabled a dynamic and structural analysis of the knowledge networks formed by members of software maintenance and development project teams between 2007 and 2013. The study enabled identification of knowledge categories throughout this period, in addition to the determination that the networks have a structure with small-world and scale-free models. Finally, we concluded that, in general, the topologies of the networks studies had characteristics for facilitating the flow of knowledge within the organization.展开更多
文摘Knowledge graphs convey precise semantic information that can be effectively interpreted by neural networks,and generating descriptive text based on these graphs places significant emphasis on content consistency.However,knowledge graphs are inadequate for providing additional linguistic features such as paragraph structure and expressive modes,making it challenging to ensure content coherence in generating text that spans multiple sentences.This lack of coherence can further compromise the overall consistency of the content within a paragraph.In this work,we present the generation of scientific abstracts by leveraging knowledge graphs,with a focus on enhancing both content consistency and coherence.In particular,we construct the ACL Abstract Graph Dataset(ACL-AGD)which pairs knowledge graphs with text,incorporating sentence labels to guide text structure and diverse expressions.We then implement a Siamese network to complement and concretize the entities and relations based on paragraph structure by accomplishing two tasks:graph-to-text generation and entity alignment.Extensive experiments demonstrate that the logical paragraphs generated by our method exhibit entities with a uniform position distribution and appropriate frequency.In terms of content,our method accurately represents the information encoded in the knowledge graph,prevents the generation of irrelevant content,and achieves coherent and non-redundant adjacent sentences,even with a shared knowledge graph.
基金in part by the National Science Foundation of China under Grant No.62276238in part by the National Science Foundation for Distinguished Young Scholars of China under Grant No.62325602in part by the Natural Science Foundation of Henan,China under Grant No.232300421095.
文摘The Heterogeneous Capacitated Vehicle Routing Problem(HCVRP),which involves efficiently routing vehicles with diverse capacities to fulfill various customer demands at minimal cost,poses an NP-hard challenge in combinatorial optimization.Recently,reinforcement learning approaches such as 2D Array Pointer Networks(2D-Ptr)have demonstrated remarkable speed in decision-making by modeling multiple agents’concurrent choices as a sequence of consecutive actions.However,these learning-based models often struggle with generalization,meaning they cannot seamlessly adapt to new scenarios with varying numbers of vehicles or customers without retraining.Inspired by the potential of multi-teacher knowledge distillation to harness diverse knowledge from multiple sources and craft a comprehensive student model,we propose to enhance the generalization capability of 2D-Ptr through Multiple Teacher-forcing Knowledge Distillation(MTKD).We initially train 12 unique 2D-Ptr models under various settings to serve as teacher models.Subsequently,we randomly sample a teacher model and a batch of problem instances,focusing on those where the chosen teacher performed best.This teacher model then solves these instances,generating high-reward action sequences to guide knowledge transfer to the student model.We conduct rigorous evaluations across four distinct datasets,each comprising four HCVRP instances of varying scales.Our empirical findings underscore the proposed method superiority over existing learning-based methods in terms of both computational efficiency and solution quality.
基金funded by Hanoi University of Science and Technology(HUST)under project number T2023-PC-008.
文摘Due to the necessity for lightweight and efficient network models, deploying semantic segmentation models on mobile robots (MRs) is a formidable task. The fundamental limitation of the problem lies in the training performance, the ability to effectively exploit the dataset, and the ability to adapt to complex environments when deploying the model. By utilizing the knowledge distillation techniques, the article strives to overcome the above challenges with the inheritance of the advantages of both the teacher model and the student model. More precisely, the ResNet152-PSP-Net model’s characteristics are utilized to train the ResNet18-PSP-Net model. Pyramid pooling blocks are utilized to decode multi-scale feature maps, creating a complete semantic map inference. The student model not only preserves the strong segmentation performance from the teacher model but also improves the inference speed of the prediction results. The proposed method exhibits a clear advantage over conventional convolutional neural network (CNN) models, as evident from the conducted experiments. Furthermore, the proposed model also shows remarkable improvement in processing speed when compared with light-weight models such as MobileNetV2 and EfficientNet based on latency and throughput parameters. The proposed KD-SegNet model obtains an accuracy of 96.3% and a mIoU (mean Intersection over Union) of 77%, outperforming the performance of existing models by more than 15% on the same training dataset. The suggested method has an average training time that is only 0.51 times less than same field models, while still achieving comparable segmentation performance. Hence, the semantic segmentation frames are collected, forming the motion trajectory for the system in the environment. Overall, this architecture shows great promise for the development of knowledge-based systems for MR’s navigation.
基金supported by the National Science and Technology Council(NSTC),Taiwan,under Grants Numbers 112-2622-E-029-009 and 112-2221-E-029-019.
文摘In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations.In particular,resource-intensive embeddings often lead to increased computational costs,and may limit scalability and adaptability in practical environ-ments,such as in low-resource settings or real-world applications.This paper explores an approach to knowledge graph representation learning that leverages small,reserved entities and relation sets for parameter-efficient embedding.We introduce a hierarchical attention network designed to refine and maximize the representational quality of embeddings by selectively focusing on these reserved sets,thereby reducing model complexity.Empirical assessments validate that our model achieves high performance on the benchmark dataset with fewer parameters and smaller embedding dimensions.The ablation studies further highlight the impact and contribution of each component in the proposed hierarchical attention structure.
基金supported by Natural Science Foundation of Sichuan,China(Grant No.:2024ZDZX0019).
文摘Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challenges related to data standardization,completeness,and accuracy,primarily due to the decen-tralized distribution of TCM resources.To address these issues,we developed a platform for TCM knowledge discovery(TCMKD,https://cbcb.cdutcm.edu.cn/TCMKD/).Seven types of data,including syndromes,formulas,Chinese patent drugs(CPDs),Chinese medicinal materials(CMMs),ingredients,targets,and diseases,were manually proofread and consolidated within TCMKD.To strengthen the integration of TCM with modern medicine,TCMKD employs analytical methods such as TCM data mining,enrichment analysis,and network localization and separation.These tools help elucidate the molecular-level commonalities between TCM and contemporary scientific insights.In addition to its analytical capabilities,a quick question and answer(Q&A)system is also embedded within TCMKD to query the database efficiently,thereby improving the interactivity of the platform.The platform also provides a TCM text annotation tool,offering a simple and efficient method for TCM text mining.Overall,TCMKD not only has the potential to become a pivotal repository for TCM,delving into the pharmaco-logical foundations of TCM treatments,but its flexible embedded tools and algorithms can also be applied to the study of other traditional medical systems,extending beyond just TCM.
文摘With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precision and similarity measurement. This study, set against the backdrop of the shipping industry, combines top-down and bottom-up schema design strategies to achieve precise and flexible knowledge representation. The research adopts a semi-structured approach, innovatively constructing an adaptive schema generation mechanism based on reinforcement learning, which models the knowledge graph construction process as a Markov decision process. This method begins with general concepts, defining foundational industry concepts, and then delves into abstracting core concepts specific to the maritime domain through an adaptive pattern generation mechanism that dynamically adjusts the knowledge structure. Specifically, the study designs a four-layer knowledge construction framework, including the data layer, modeling layer, technology layer, and application layer. It draws on a mutual indexing strategy, integrating large language models and traditional information extraction techniques. By leveraging self-attention mechanisms and graph attention networks, it efficiently extracts semantic relationships. The introduction of logic-form-driven solvers and symbolic decomposition techniques for reasoning significantly enhances the model’s ability to understand complex semantic relationships. Additionally, the use of open information extraction and knowledge alignment techniques further improves the efficiency and accuracy of information retrieval. Experimental results demonstrate that the proposed method not only achieves significant performance improvements in knowledge graph retrieval within the shipping domain but also holds important theoretical innovation and practical application value.
基金supported by the National Natural Science Foundation of China(Grant No.:62101087)the China Postdoctoral Science Foundation(Grant No.:2021MD703942)+2 种基金the Chongqing Postdoctoral Research Project Special Funding,China(Grant No.:2021XM2016)the Science Foundation of Chongqing Municipal Commission of Education,China(Grant No.:KJQN202100642)the Chongqing Natural Science Foundation,China(Grant No.:cstc2021jcyj-msxmX0834).
文摘Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine.
基金the National Natural Science Foundation of China (Grants No. 12072090 and No.12302056) to provide fund for conducting experiments。
文摘Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.
基金supported in part by the National Natural Science Foundation of China under Grant 72264036in part by the West Light Foundation of The Chinese Academy of Sciences under Grant 2020-XBQNXZ-020+1 种基金Social Science Foundation of Xinjiang under Grant 2023BGL077the Research Program for High-level Talent Program of Xinjiang University of Finance and Economics 2022XGC041,2022XGC042.
文摘Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units.
基金supported in part by the Science and Technology Innovation 2030-“New Generation of Artificial Intelligence”Major Project(No.2021ZD0111000)Henan Provincial Science and Technology Research Project(No.232102211039).
文摘The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.
基金support received from US Department of Transportation Tier 1 University Transportation Center CREATE Award No.69A3552348330.
文摘With the ability to harness the power of big data,the digital twin(DT)technology has been increasingly applied to the modeling and management of structures and infrastructure systems,such as buildings,bridges,and power distribution systems.Supporting these applications,an important family of methods are based on graphs.For DT applications in modeling and managing smart cities,large-scale knowledge graphs(KGs)are necessary to represent the complex interdependencies and model the urban infrastructure as a system of systems.To this end,this paper develops a conceptual framework:Automated knowledge Graphs for Complex Systems(AutoGraCS).In contrast to existing KGs developed for DTs,AutoGraCS can support KGs to account for interdependencies and statistical correlations across complex systems.The established KGs from AutoGraCS can then be easily turned into Bayesian networks for probabilistic modeling,Bayesian analysis,and adaptive decision supports.Besides,AutoGraCS provides flexibility in support of users’need to implement the ontology and rules when constructing the KG.With the user-defined ontology and rules,AutoGraCS can automatically generate a KG to represent a complex system consisting of multiple systems.The bridge network in Miami-Dade County,FL is used as an illustrative example to generate a KG that integrates multiple layers of data from the bridge network,traffic monitoring facilities,and flood water watch stations.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2003AA1Z2560,2002AA414060)the Key Science and Technology Program of Shaanxi Province (No2006K04-G10)
文摘To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of tools for supporting the sharing of knowledge and promoting NM collaboration. A 5-tuple based semantic information retrieval model is proposed, which includes the interoperation on the semantic layer, and a test process is given for this model. The recall ratio and the precision ratio of manufacturing knowledge retrieval are proved to be greatly improved by evaluation. Thus, a practical and reliable approach based on the semantic web is provided for solving the correlated concrete problems in regional networked manufacturing.
基金The National Natural Science Foundation of China(No70571013,70973017)Program for New Century Excellent Talentsin University (NoNCET-06-0471)Human Social Science Fund Project ofMinistry of Education (No09YJA630020)
文摘In order to simulate the real growing process, a new type of knowledge network growth mechanism based on local world connectivity is constructed. By the mean-field method, theoretical prediction of the degree distribution of the knowledge network is given, which is verified by Matlab simulations. When the new added node's local world size is very small, the degree distribution of the knowledge network approximately has the property of scale-free. When the new added node's local world size is not very small, the degree distribution transforms from pure power-law to the power-law with an exponential tailing. And the scale-free index increases as the number of new added edges decreases and the tunable parameters increase. Finally, comparisons of some knowledge indices in knowledge networks generated by the local world mechanism and the global mechanism are given. In the long run, compared with the global mechanism, the local world mechanism leads the average knowledge levels to slower growth and brings homogenous phenomena.
基金supported in part by the National Natural Science Foundation of China(61621003,62073079,62088101,12025107,11871463,11688101)。
文摘Along with the development of information technologies such as mobile Internet,information acquisition technology,cloud computing and big data technology,the traditional knowledge engineering and knowledge-based software engineering have undergone fundamental changes where the network plays an increasingly important role.Within this context,it is required to develop new methodologies as well as technical tools for network-based knowledge representation,knowledge services and knowledge engineering.Obviously,the term“network”has different meanings in different scenarios.Meanwhile,some breakthroughs in several bottleneck problems of complex networks promote the developments of the new methodologies and technical tools for network-based knowledge representation,knowledge services and knowledge engineering.This paper first reviews some recent advances on complex networks,and then,in conjunction with knowledge graph,proposes a framework of networked knowledge which models knowledge and its relationships with the perspective of complex networks.For the unique advantages of deep learning in acquiring and processing knowledge,this paper reviews its development and emphasizes the role that it played in the development of knowledge engineering.Finally,some challenges and further trends are discussed.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175019,61104169,51205321)
文摘Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process for future computer-aided DR applications, a prerequisite is to provide the measure for the DR knowledge. In this paper, a new knowledge network evaluation method for DR management is presented. The method characterizes the DR knowledge value from four perspectives, namely, the design rationale structure scale, association knowledge and reasoning ability, degree of design justification support and degree of knowledge representation conciseness. The DR knowledge comprehensive value is also measured by the proposed method. To validate the proposed method, different style of DR knowledge network and the performance of the proposed measure are discussed. The evaluation method has been applied in two realistic design cases and compared with the structural measures. The research proposes the DR knowledge evaluation method which can provide object metric and selection basis for the DR knowledge reuse during the product design process. In addition, the method is proved to be more effective guidance and support for the application and management of DR knowledge.
文摘In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.
基金This project is financially suported by the State"863 Plan"(No.2002AA331112)
文摘The non-linear relationship between parameters of rapidly solidified agingprocesses and mechancal and electrical properties of Cu-Cr-Zr alloy is available by using asupervised artificial neural network (ANN). A knowledge repository of rapidly solidified agingprocesses is established via sufficient data learning by the network. The predicted values of theneural network are in accordance with the tested data. So an effective measure for foreseeing andcontrolling the properties of the processing is provided.
基金Under the auspices of Major Project of National Social Science Foundation of China(No.13&ZD027)National Natural Science Foundation of China(No.41201128,71433008)
文摘Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results revealed the spatial structure,composition structure,hierarchical structure,group structure,and control structure of Chinese city network,as well as its dynamic factors.The major findings are:1) the spatial pattern presents a diamond structure,in which Wuhan is the central city;2) although the invention patent knowledge network is the main part of the broader inter-city innovative cooperation network,it is weaker than the utility model patent;3) as the senior level cities,Beijing,Shanghai and the cities in the Zhujiang(Pearl) River Delta Region show a strong capability of both spreading and controlling technological knowledge;4) whilst a national technology alliance has preliminarily formed,regional alliances have not been adequately established;5) even though the cooperation level amongst weak connection cities is not high,such cities still play an important role in the network as a result of their location within ′structural holes′ in the network;and 6) the major driving forces facilitating inter-city technological cooperation are geographical proximity,hierarchical proximity and technological proximity.
基金supported in part by the Beijing Natural Science Foundation under Grants L211020 and M21032in part by the National Natural Science Foundation of China under Grants U1836106 and 62271045in part by the Scientific and Technological Innovation Foundation of Foshan under Grants BK21BF001 and BK20BF010。
文摘Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity matching.In this transformative process,the advancement of artificial intelligence and intelligent information services is invigorated.Meanwhile,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial success.This article embarks on a comprehensive journey through the last strides in the field of KG via machine learning.With a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge reasoning.Especially,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link prediction.Moreover,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction.
文摘Different approaches have been established for applications of social and complex networks involving biological systems, passing through collaborative systems in knowledge networks and organizational systems. In this latter application, we highlight the studies focused on the diffusion of information and knowledge in networks. However, most of the time, the propagation of information in these networks and the resulting process of creation and diffusion of knowledge, have been studied from static perspectives. Additionally, the very concept of diffusion inevitably implies the inclusion of the temporal dimension, due to that it is an essentially dynamic process. Although static analysis provides an important perspective in structural terms, the behavioral view that reflects the evolution of the relationships of the members of these networks over time is best described by temporal networks. Thus, it is possible to analyze both the information flow and the structural changes that occur over time, which influences the dynamics of the creation and diffusion of knowledge. This article describes the computational modeling used to elucidate the creation and diffusion of knowledge in temporal networks formed to execute software maintenance and construction projects, for the period between 2007 and 2013, in the SERVIÇO FEDERAL DE PROCESSAMENTO DE DADOS (FEDERAL DATA PROCESSING SERVICE-SERPRO)—a public organization that provides information and communication technology services. The methodological approach adopted for the study was based on techniques for analyzing social and complex networks and on the complementary extensions that address temporal modeling of these networks. We present an exploratory longitudinal study that enabled a dynamic and structural analysis of the knowledge networks formed by members of software maintenance and development project teams between 2007 and 2013. The study enabled identification of knowledge categories throughout this period, in addition to the determination that the networks have a structure with small-world and scale-free models. Finally, we concluded that, in general, the topologies of the networks studies had characteristics for facilitating the flow of knowledge within the organization.