The enhancement of the intensity of red upconversion(UC)emission has significant implications for biological applications.In KZnF_(3):Yb^(3+),Er^(3+)which inherently produces high-purity red emission,the introduction ...The enhancement of the intensity of red upconversion(UC)emission has significant implications for biological applications.In KZnF_(3):Yb^(3+),Er^(3+)which inherently produces high-purity red emission,the introduction of Fe^(3+)markedly improves the UC intensity by a factor of 13.The mechanism behind the enhanced UC red luminescence is deduced to originate from the Yb^(3+)-Fe^(3+)dimer,as determined by first principle calculation and analysis of UC luminescence properties.The thermometry performance,based on splitting peaks of red emission,demonstrated enhanced temperature sensitivity at lower ranges.Exploring the photothermal properties,it was observed that temperature exhibited a linear correlation with pump power under a 980 nm laser,achieving levels up to 48℃.This temperature range is ideal for applications in mild photothermal therapy(MPTT).This work elucidates the material’s potential in advanced biological applications,merging optical thermometry and photothermics,indicating its multifunctional utility.展开更多
Background:Despite improvements in objective response rates to cisplatin-based combination chemotherapy,the majority of advanced ovarian cancer remains suboptimal,resulting in poor survival.it has been found that non-...Background:Despite improvements in objective response rates to cisplatin-based combination chemotherapy,the majority of advanced ovarian cancer remains suboptimal,resulting in poor survival.it has been found that non-coding RNAs(ncRNAs)not only participate in the transmission of signals between various cells but also participate in tumor immunity and anti-tumor immune responses,thereby regulating tumor occurrence and development.However,the function and detailed mechanism of ultraconserved RNA(ucRNA)in ovarian cancer chemoresistance is still unclear.Methods:Western blotting assay,Quantitative real-time PCR analysis(qPCR),and Kaplan-Meier Plotter analysis were performed to analyze the expression and prognosis of uc.243 in ovarian carcinoma.Cytotoxicity assay and Annexin V assay were performed to analyze the function of uc.243 in cisplatin resistance in ovarian cancer cells.RNA pull-down and qPCR experiments were performed to explore the molecular mechanism of uc.243 enhancing cisplatin resistance in ovarian cancer cells.Results:Herein,we found that uc.243 was remarkably upregulated and correlated with patient survival in chemoresistance ovarian cancer patients compared with chemo-sensitive ovarian cancer.Functional experiment displayed that uc.243 induced cisplatin resistance on ovarian cancer cells by facilitating the efflux of cisplatin(CDDP);but inhibiting the expression of uc.243 significantly reverses this function.Mechanistically,uc.243 can inhibit the binding of RNA binding protein DGCR8 microprocessor complex subunit to pri-miR-155,thereby inhibiting the cleavage of pri-miR-155 and decrease in mature miR-155,subsequently upregulates the expression of ATP binding cassette subfamily B member(ABCB1,ABCC2).Conclusion:Our research findings indicate that uc.243 can induce chemotherapy resistance in ovarian cancer,suggesting that it may become a new prognostic biomarker for malignant ovarian cancer.展开更多
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),"Qinglan Project"Young and Middle-aged Academic Leaders Program of Jiangsu Province,and the National Natural Science Foundation of China(General Program).
文摘The enhancement of the intensity of red upconversion(UC)emission has significant implications for biological applications.In KZnF_(3):Yb^(3+),Er^(3+)which inherently produces high-purity red emission,the introduction of Fe^(3+)markedly improves the UC intensity by a factor of 13.The mechanism behind the enhanced UC red luminescence is deduced to originate from the Yb^(3+)-Fe^(3+)dimer,as determined by first principle calculation and analysis of UC luminescence properties.The thermometry performance,based on splitting peaks of red emission,demonstrated enhanced temperature sensitivity at lower ranges.Exploring the photothermal properties,it was observed that temperature exhibited a linear correlation with pump power under a 980 nm laser,achieving levels up to 48℃.This temperature range is ideal for applications in mild photothermal therapy(MPTT).This work elucidates the material’s potential in advanced biological applications,merging optical thermometry and photothermics,indicating its multifunctional utility.
文摘Background:Despite improvements in objective response rates to cisplatin-based combination chemotherapy,the majority of advanced ovarian cancer remains suboptimal,resulting in poor survival.it has been found that non-coding RNAs(ncRNAs)not only participate in the transmission of signals between various cells but also participate in tumor immunity and anti-tumor immune responses,thereby regulating tumor occurrence and development.However,the function and detailed mechanism of ultraconserved RNA(ucRNA)in ovarian cancer chemoresistance is still unclear.Methods:Western blotting assay,Quantitative real-time PCR analysis(qPCR),and Kaplan-Meier Plotter analysis were performed to analyze the expression and prognosis of uc.243 in ovarian carcinoma.Cytotoxicity assay and Annexin V assay were performed to analyze the function of uc.243 in cisplatin resistance in ovarian cancer cells.RNA pull-down and qPCR experiments were performed to explore the molecular mechanism of uc.243 enhancing cisplatin resistance in ovarian cancer cells.Results:Herein,we found that uc.243 was remarkably upregulated and correlated with patient survival in chemoresistance ovarian cancer patients compared with chemo-sensitive ovarian cancer.Functional experiment displayed that uc.243 induced cisplatin resistance on ovarian cancer cells by facilitating the efflux of cisplatin(CDDP);but inhibiting the expression of uc.243 significantly reverses this function.Mechanistically,uc.243 can inhibit the binding of RNA binding protein DGCR8 microprocessor complex subunit to pri-miR-155,thereby inhibiting the cleavage of pri-miR-155 and decrease in mature miR-155,subsequently upregulates the expression of ATP binding cassette subfamily B member(ABCB1,ABCC2).Conclusion:Our research findings indicate that uc.243 can induce chemotherapy resistance in ovarian cancer,suggesting that it may become a new prognostic biomarker for malignant ovarian cancer.