Additive manufacturing(AM)technology enables the creation of a wide variety of assemblies and complex shapes from three-dimensional model data in a bottom-up,layer-by-layer manner.Therefore,AM has revolutionized the m...Additive manufacturing(AM)technology enables the creation of a wide variety of assemblies and complex shapes from three-dimensional model data in a bottom-up,layer-by-layer manner.Therefore,AM has revolutionized the modern manufacturing industry,attracting increasing interest from both academic and industrial fields.The Rapid Manufacturing Center(RMC)of the School of Materials Science and Engineering at the Huazhong Univer-sity of Science and Technology(HUST),one of the earliest and most powerful AM research teams in China,has been engaged in AM research since 1991.Aiming to address the“stuck neck”problems of specific high-strength products for AM,the RMC has conducted full-chain research in the aspects of special materials,processes,equip-ment,and applications for AM.Moreover,it has formed a multi-disciplinary research team over the past three decades.Relevant research achievements in the AM field include winning five national awards,more than ten first prizes,and more than ten second prizes at the provincial and ministerial levels.The RMC was complimented as“the world’s most influential organization in the laser AM field in 2018”by Virtual and Physical Prototyping(an international authoritative magazine of AM).Moreover,their industrialization achievements were evaluated as“having affected countries such as Singapore,South Korea,and the United States”by an international author-itative Wohlers Report on AM.In this study,we first summarize the representative research achievements of the RMC in the AM field.These include the preparation and processing technology of high-performance polymeric,metallic,and ceramic materials for AM;advanced processing technology and software/equipment for AM;and typical AM-fabricated products and their applications.Further,we discuss the latest research achievements in cutting-edge 4D printing in terms of feedstock selection,printing processes,induction strategies,and potential ap-plications.Finally,we provide insights into the future directions of AM technology development:(ⅰ)Evolving from three-dimensional printing to multi-dimensional printing,(ⅱ)transitioning from plane slicing to curved surface slicing to woven slicing,(ⅲ)enhancing efficient formation from dot-line-sheet-volume printing,(ⅳ)shifting from single material to multi-materials AM,(ⅴ)advancing from the multiscale direction of macroscopic-mesoscopic-microscopic structures,(ⅵ)integrating material preparation with forming integration,(ⅶ)expanding from small batch to large batch.展开更多
Optical network plays an important role in telecommunication networks, which supports high-capacity and long-distance transmission of Internet traffic. However, as the scaling and evolving of optical networks, it face...Optical network plays an important role in telecommunication networks, which supports high-capacity and long-distance transmission of Internet traffic. However, as the scaling and evolving of optical networks, it faces great challenges in terms of network operation, optimization and maintenance. Artificial intelligence(AI) has been proved to have superiority on addressing complex problems, by mimicking cognitive skills similar with human mind. In this paper, we provide a comprehensive investigation of AI applications in optical transport network. First, we give a general AI-based control architecture for optical transport networks. Then, we discuss several typical applications of AI model and algorithms in optical networks. Different use cases are considered, including network planning, quality of transmission(QoT) estimation, network reconfiguration, traffic prediction, failure management and so on. In addition, we also present some potential technical challenges for AI application in optical network for the next years.展开更多
Agricultural Internet of Things(IoT)has brought new changes to agricultural production.It not only increases agricultural output but can also effectively improve the quality of agricultural products,reduce labor costs...Agricultural Internet of Things(IoT)has brought new changes to agricultural production.It not only increases agricultural output but can also effectively improve the quality of agricultural products,reduce labor costs,increase farmers'income,and truly realize agricultural modernization and intelligence.This paper systematically summarizes the research status of agricultural IoT.Firstly,the current situation of agricultural IoT is illustrated and its system architecture is summarized.Then,the five key technologies of agricultural IoT are discussed in detail.Next,applications of agricultural IoT in five representative fields are introduced.Finally,the problems existing in agricultural IoT are analyzed and a forecast is given of the future development of agricultural IoT.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.52235008,U2037203,and U2341270)Key Research and Development Plan of Hubei Province(2022BAA030).
文摘Additive manufacturing(AM)technology enables the creation of a wide variety of assemblies and complex shapes from three-dimensional model data in a bottom-up,layer-by-layer manner.Therefore,AM has revolutionized the modern manufacturing industry,attracting increasing interest from both academic and industrial fields.The Rapid Manufacturing Center(RMC)of the School of Materials Science and Engineering at the Huazhong Univer-sity of Science and Technology(HUST),one of the earliest and most powerful AM research teams in China,has been engaged in AM research since 1991.Aiming to address the“stuck neck”problems of specific high-strength products for AM,the RMC has conducted full-chain research in the aspects of special materials,processes,equip-ment,and applications for AM.Moreover,it has formed a multi-disciplinary research team over the past three decades.Relevant research achievements in the AM field include winning five national awards,more than ten first prizes,and more than ten second prizes at the provincial and ministerial levels.The RMC was complimented as“the world’s most influential organization in the laser AM field in 2018”by Virtual and Physical Prototyping(an international authoritative magazine of AM).Moreover,their industrialization achievements were evaluated as“having affected countries such as Singapore,South Korea,and the United States”by an international author-itative Wohlers Report on AM.In this study,we first summarize the representative research achievements of the RMC in the AM field.These include the preparation and processing technology of high-performance polymeric,metallic,and ceramic materials for AM;advanced processing technology and software/equipment for AM;and typical AM-fabricated products and their applications.Further,we discuss the latest research achievements in cutting-edge 4D printing in terms of feedstock selection,printing processes,induction strategies,and potential ap-plications.Finally,we provide insights into the future directions of AM technology development:(ⅰ)Evolving from three-dimensional printing to multi-dimensional printing,(ⅱ)transitioning from plane slicing to curved surface slicing to woven slicing,(ⅲ)enhancing efficient formation from dot-line-sheet-volume printing,(ⅳ)shifting from single material to multi-materials AM,(ⅴ)advancing from the multiscale direction of macroscopic-mesoscopic-microscopic structures,(ⅵ)integrating material preparation with forming integration,(ⅶ)expanding from small batch to large batch.
基金supported by the National Natural Science Foundation of China(61901053,61831003,62021005)the Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technologyand Communication Network,Soochow University(SDGC2117)the Fundamental Research Funds for the Central Universities(2021RC12).
文摘Optical network plays an important role in telecommunication networks, which supports high-capacity and long-distance transmission of Internet traffic. However, as the scaling and evolving of optical networks, it faces great challenges in terms of network operation, optimization and maintenance. Artificial intelligence(AI) has been proved to have superiority on addressing complex problems, by mimicking cognitive skills similar with human mind. In this paper, we provide a comprehensive investigation of AI applications in optical transport network. First, we give a general AI-based control architecture for optical transport networks. Then, we discuss several typical applications of AI model and algorithms in optical networks. Different use cases are considered, including network planning, quality of transmission(QoT) estimation, network reconfiguration, traffic prediction, failure management and so on. In addition, we also present some potential technical challenges for AI application in optical network for the next years.
文摘Agricultural Internet of Things(IoT)has brought new changes to agricultural production.It not only increases agricultural output but can also effectively improve the quality of agricultural products,reduce labor costs,increase farmers'income,and truly realize agricultural modernization and intelligence.This paper systematically summarizes the research status of agricultural IoT.Firstly,the current situation of agricultural IoT is illustrated and its system architecture is summarized.Then,the five key technologies of agricultural IoT are discussed in detail.Next,applications of agricultural IoT in five representative fields are introduced.Finally,the problems existing in agricultural IoT are analyzed and a forecast is given of the future development of agricultural IoT.