[Objective]Precipitation events caused by Super Typhoon Doksuri in Fujian Province were simulated and evaluated based on the WRF model to provide a reference for typhoon precipitation simulation and forecasting in sou...[Objective]Precipitation events caused by Super Typhoon Doksuri in Fujian Province were simulated and evaluated based on the WRF model to provide a reference for typhoon precipitation simulation and forecasting in southeast coastal areas of China.[Methods]The next-generation mesoscale numerical weather prediction model WRF V4.3(The Weather Research and Forecasting Model)was used to simulate the precipitation caused by Typhoon Doksuri in Fujian Province in 2023.Observations from 86 meteorological stations with hourly rainfall records were used to evaluate the model’s performance.Six evaluation indices were used,including the correlation coefficient(R),root mean square error(RMSE),mean absolute error(MAE),equitable threat score(ETS),probability of detection(POD),and false alarm ratio(FAR).[Results](1)The temporal and spatial evolution of precipitation during Typhoon Doksuri was effectively captured by the WRF model.Precipitation intensity increased gradually from July 27 to 29,2023,with the heaviest rainfall concentrated in the northern and eastern coastal areas of Fujian Province.(2)Significant differences in model performance were observed in terms of R,RMSE,and MAE.The largest errors occurred in Putian City,while smaller errors were found in southwestern Fujian Province.The evaluation result of all six indices showed that the WRF model performed best in simulating daily precipitation compared to hourly,three-hourly,six-hourly,and twelve-hourly precipitation.(3)The R95p index indicated that the WRF model successfully captured the overall spatial distribution of extreme precipitation.However,extreme precipitation intensity was overestimated in certain coastal areas.(4)Despite accurately identifying the coastal regions of Fujian as being most affected,the WRF model failed to accurately simulate the spatial distribution and intensity of precipitation.The simulated precipitation centers showed discrepancies when compared with the observed centers.[Conclusion]Although the WRF model underestimated hourly precipitation,it successfully captured the temporal evolution and spatial distribution of rainfall caused by Typhoon Doksuri in Fujian Province.It reproduced the heavy rainfall centers in central Fujian Province,with daily precipitation peaks reaching up to 350 mm.This highlighted the severity of extreme rainfall caused by Typhoon Doksuri.展开更多
Typhoon Chaba was the most intense typhoon to strike western Guangdong since Typhoon Mujigae in 2015.According to the National Disaster Reduction Center of China,in the morning of July 7,2022,over 1.5 million people i...Typhoon Chaba was the most intense typhoon to strike western Guangdong since Typhoon Mujigae in 2015.According to the National Disaster Reduction Center of China,in the morning of July 7,2022,over 1.5 million people in Guangdong,Guangxi,and Hainan were affected by Typhoon Chaba.The typhoon also caused the“Fukui 001”ship to be in distress in the waters near Yangjiang,Guangdong,on July 2,resulting in big casualties.Studies have indicated that wind field forecast for Typhoon Chaba was not accurate.To better simulate typhoon events and assess their impacts,we proposed the use of a model wind field(Fujita-Takahashi)integrated with the Copernicus Marine and Environmental Monitoring Service(CMEMS)data to reconstruct effectively the overall wind field of Typhoon Chaba.The simulation result aligns well with the observations,particularly at the Dashu Island Station,showing consistent trends in wind speed changes.However,certain limitations were noted.The model shows that the attenuation of wind speed is slower when typhoon neared land than that observed,indicating that the model has a high simulation accuracy for the ocean wind field,but may have deviations near coastal areas.The result is accurate for open sea but deviated for near land due to the land friction effect.Therefore,we recommend to adjust the model to improve the accuracy for near coasts.展开更多
Previous studies have revealed that typhoons can affect the ionosphere.This paper uses GNSS observations provided by GNSS tracking stations of Taiwan region,ERA5 gravity wave dissipation products,and Himawari-8 band 0...Previous studies have revealed that typhoons can affect the ionosphere.This paper uses GNSS observations provided by GNSS tracking stations of Taiwan region,ERA5 gravity wave dissipation products,and Himawari-8 band 07 brightness temperature observation data to analyze the impact of Typhoon Meranti on Taiwan region's ionosphere from September 13 to 15,2016.In addition to the daily effects of traveling ionospheric disturbances(TIDs),TIDs of various intensities caused by Meranti-induced gravity waves were observed during this period,which is inseparable from the state of the typhoon and the topographic features during its progress.The ionospheric disturbance caused by the edge of a typhoon is usually larger than that at the typhoon eye.When the typhoon approached Taiwan region with high intensity on September 14,it was observed that the gravity waves caused by the typhoon had a wavelength of about 174-293 km,a period of 13.5-23.5 min,and a propagation speed of 142-302 m/s.When the vortex structure of a typhoon interacts with complex surfaces such as mountains,it is easier to excite more medium-scale gravity waves.The origin that excites gravity waves and causes ionospheric anomalies is different from the location of the typhoon eye and changes over time.The gravity waves caused by the typhoon lasted for three days in the central mountains of Taiwan region.Still,background wind conditions restricted the propagation of gravity waves from the mesosphere to the thermosphere and led to TID predominantly concentrated between 06:00 and 13:00 UT each day.展开更多
Understanding the factors that control typhoon rainfall distribution is critical for improving rainfall forecasting,especially for landfall typhoons. This study investigated the impact of typhoon size on rainfall char...Understanding the factors that control typhoon rainfall distribution is critical for improving rainfall forecasting,especially for landfall typhoons. This study investigated the impact of typhoon size on rainfall characteristics at landfall in eastern coast of China. Typhoons Ampil(2018) and Rumbia(2018), which had similar intensities, were investigated to explore the connection between storm size and rainfall. The larger cyclonic wind field in Typhoon Rumbia led to greater vorticity and broader convergence compared to Typhoon Ampil, along with an ascending region outside the eyewall, which promoted more vigorous rainbands. Rumbia′s larger size exhibited greater outer-core radial vorticity advection relative to Ampil. This maintained its extensive outer-core wind field and intensified outer rainband development. Consequently,Rumbia generated more extensive and prolonged rainfall post-landfall compared to Ampil. A composite analysis of typhoons making landfall in eastern China(2001-2021) further examines the statistical correlation between typhoon size and rainfall distribution. Results indicate that larger typhoons are more likely to generate heavier and more spatially extensive rainfall in regions beyond their eyewalls. These findings highlight that typhoon size significantly regulates rainfall evolution during landfall, underscoring the necessity of incorporating this parameter into operational rainfall forecasting models for landfalling typhoons.展开更多
Measurements from a hyperspectral infrared(HIR) sounder onboard a satellite in geostationary orbit not only provide atmospheric thermodynamic information,but also can be used to infer dynamic information with high tem...Measurements from a hyperspectral infrared(HIR) sounder onboard a satellite in geostationary orbit not only provide atmospheric thermodynamic information,but also can be used to infer dynamic information with high temporal resolution.Radiance measurements from the Geostationary Interferometric Infrared Sounder(GIIRS),obtained with 15-min temporal resolution during Typhoon Maria(2018) and 30-min temporal resolution during Typhoon Lekima(2019),were used to derive three-dimensional(3D) horizontal winds by tracking the motion of atmospheric moisture.This work focused on the impact of assimilation of 3D winds on typhoon analyses and forecasts using the operational NWP model of the China Meteorological Administration(CMA-MESO),and improved understanding of the potential benefits of assimilating dynamic information from geostationary sounder data with higher temporal resolution.The standard deviation of the observations minus simulations revealed that the accuracy of the derived 3D winds with 15-min resolution was higher than that of derived winds with 30-min resolution.Experiments showed that the assimilation system can effectively absorb the information of the derived 3D winds,and that dynamic information from clear-sky areas can be transferred to typhoon areas.In typhoon prediction,assimilation of the derived 3D winds had greatest influence on the typhoon track,and less influence on the maximum wind speed.Assimilation of the derived 3D winds reduced the average track error by 17.4% for Typhoon Maria(2018) and by 3.5% for Typhoon Lekima(2019) during their entire 36-h forecasts initiated at different times.Assimilation of GIIRS dynamic information can substantially improve forecasts of heavy precipitation by CMAMESO.Results indicate that the assimilation of dynamic information from high-temporal-resolution geostationary HIR sounder data adds value for improved numerical weather prediction.展开更多
Typhoons,as strong convective systems,can excite multi-scale atmospheric gravity waves that travel long distances,and play an important role in momentum and energy transmission between the middle and upper atmosphere....Typhoons,as strong convective systems,can excite multi-scale atmospheric gravity waves that travel long distances,and play an important role in momentum and energy transmission between the middle and upper atmosphere.In this paper,the research progress in the observation techniques,generation mechanism and propagation characteristics of typhoon-induced gravity waves were systematically reviewed.These studies show that based on the combined application of ground-based and space-based observation(sounding balloons,airglow imaging,and satellite remote sensing)and reanalysis data(such as ERA5),with the aid of ray tracing theory and numerical simulation technology,the mechanism of typhoon induced gravity waves and its dynamic characteristics in the middle and upper atmosphere have been better revealed.At present,there are still some insufficiencies in the fields of propagation path tracking of gravity waves,terrain multi-scale effect modeling and parameterization of inertial gravity waves,which need to be further studied in the future.展开更多
Amid growing typhoon risks driven by climate change with projected shifts in precipitation intensity and temperature patterns,Taiwan faces increasing challenges in flood risk.In response,this study proposes a geograph...Amid growing typhoon risks driven by climate change with projected shifts in precipitation intensity and temperature patterns,Taiwan faces increasing challenges in flood risk.In response,this study proposes a geographic information system(GIS)-based artificial intelligence(AI)model to assess flood susceptibility in Keelung City,integrating geospatial and hydrometeorological data collected during Typhoon Krathon(2024).The model employs the random forest(RF)algorithm,using seven environmental variables excluding average elevation,slope,topographic wetness index(TWI),frequency of cumulative rainfall threshold exceedance,normalized difference vegetation index(NDVI),flow accumulation,and drainage density,with the number of flood events per unit area as the output.The RF model demonstrates high accuracy,achieving the accuracy of 97.45%.Feature importance indicates that NDVI is the most critical predictor,followed by flow accumulation,TWI,and rainfall frequency.Furthermore,under the IPCC AR5 RCP8.5 scenarios,projected 50-year return period rainfall in Keelung City increases by 42.40%-64.95%under+2℃to+4℃warming.These projections were integrated into the RF model to simulate future flood susceptibility.Results indicate two districts in the study area face the greatest increase in flood risk,emphasizing the need for targeted climate adaptation in vulnerable urban areas.展开更多
The extraordinary Super Typhoon(STY)Muifa(2022)made landfall four times and had a significant impact on the coastal regions from south to north of China.Although previous studies have demonstrated the‘pumping effect&...The extraordinary Super Typhoon(STY)Muifa(2022)made landfall four times and had a significant impact on the coastal regions from south to north of China.Although previous studies have demonstrated the‘pumping effect'of typhoons on the enhancement of reactive nitrogen(Nr)wet deposition over the ocean,it is uncertain how Nr deposition is influenced by typhoons thatmake prolonged mechanism due tomultiple landfalls.In this study,theNr wet deposition induced by STYMuifawas investigated fromthe perspective of in-and below-cloud processes based on the Nested Air Quality Prediction Modeling System with an online tracer-tagging module.High volume of Nr wet deposition caused by Muifa migrated from south to north,passing over half of China's coastal cities.Compared to the typhoon generated vicinity,both mean values of the oxidized and reduced nitrogen wet deposition over the Typhoon affected regions were increased about 20.4 and 66.1 times after landfall even with the similar rainfall.Emissions from the four landfall areas of China contributed to the majority of Nr wet deposition with significantly enhanced proportion of in-cloud deposition.The strong pumping effect of typhoon to the Nr deposition along the coastal areas and the risk of ecosystem effects requires further researches and higher demands on the control of nitrogen emissions of National Industrial Park,which usually located in China's coastal cities.展开更多
While steady improvements have been achieved for the track forecasts of typhoons,there has been a lack of improvement for intensity forecasts.One challenge for intensity forecasts is to capture the rapid intensificati...While steady improvements have been achieved for the track forecasts of typhoons,there has been a lack of improvement for intensity forecasts.One challenge for intensity forecasts is to capture the rapid intensification(RI),whose nonlinear characteristics impose great difficulties for numerical models.The ensemble sensitivity analysis(ESA)method is used here to analyze the initial conditions that contribute to typhoon intensity forecasts,especially with RI.Six RI processes from five typhoons(Chaba,Haima,Meranti,Sarika,and Songda)in 2016,are applied with ESA,which also gives a composite initial condition that favors subsequent RI.Results from individual cases have generally similar patterns of ESA,but with different magnitudes,when various cumulus parameterization schemes are applied.To draw the initial conditions with statistical significance,sample-mean azimuthal components of ESA are obtained.Results of the composite sensitivity show that typhoons that experience RI in 24 h favor enhanced primary circulation from low to high levels,intensified secondary circulation with increased radial inflow at lower levels and increased radial outflow at upper levels,a prominent warm core at around 300 hPa,and increased humidity at low levels.As the forecast lead time increases,the patterns of ESA are retained,while the sensitivity magnitudes decay.Given the general and quantitative composite sensitivity along with associated uncertainties for different cumulus parameterization schemes,appropriate sampling of the composite sensitivity in numerical models could be beneficial to capturing the RI and improving the forecasting of typhoon intensity.展开更多
The 2019 Typhoon Lekima triggered extensive landslides in Zhejiang Province.To explore the impact of typhoon paths on the distribution of landslide susceptibility,this study proposes a spatiotemporal zoning assessment...The 2019 Typhoon Lekima triggered extensive landslides in Zhejiang Province.To explore the impact of typhoon paths on the distribution of landslide susceptibility,this study proposes a spatiotemporal zoning assessment framework based on typhoon paths and inner rainbands.According to the typhoon landing path and its rainfall impact range,the study area is divided into the typhoon event period(TEP)and the annual non-typhoon period(ANP).The model uses 14 environmental factors,with the only difference between TEP and ANP being the rainfall index:TEP uses 48-hour rainfall during the typhoon,while ANP uses multi-year average annual rainfall.Modeling and comparative analysis were conducted using six machine learning models including random forest(RF)and support vector machine(SVM).The results show that the distribution pattern of high-risk landslide areas during TEP is significantly correlated with typhoon intensity:when the intensity is level 12,high-risk areas are radially distributed;at levels 10-11,they tend to concentrate asymmetrically along the coast;and when the intensity drops to below level 9,the overall susceptibility decreases significantly.During ANP,the distribution of landslides is relatively uniform with no obvious spatial concentration.Analysis on the factor contribution rate indicates that the rainfall weight in TEP is as high as 32.1%,making it the dominant factor;in ANP,the rainfall weight drops to 13.6%while the influence of factors such as slope and topographic wetness index increases,revealing differences in landslide formation mechanisms between the two periods.This study demonstrates that the spatiotemporal zoning method based on typhoon paths can effectively characterize the spatial susceptibility patterns of landslides and improve disaster identification capabilities under extreme weather conditions.The finally generated annual susceptibility zoning map divides the study area into four types of risk regions,providing a reference for dynamic monitoring and differentiated risk management of landslides in typhoon-prone areas.展开更多
To investigate the effect of typhoon path translation on storm surge augmentation,the storm surge during Typhoon 1909 Lekima in the East China Sea is simulated using Delft 3D.The model sets up three scenarios to analy...To investigate the effect of typhoon path translation on storm surge augmentation,the storm surge during Typhoon 1909 Lekima in the East China Sea is simulated using Delft 3D.The model sets up three scenarios to analyze the path’s effect on storm surge in the Shandong Peninsula Sea by shifting the typhoon path to the east and west.Results show that the areas of maximum storm surge in each scenario are located on both sides of the typhoon path and shift along with its movement.When the typhoon path shifts eastward,the maximum storm surge intensifies at Zhifu Island station 8 hours earlier.Conversely,a westward shift in the typhoon track leads to a maximum storm surge increase at Shidao Island station 12 hours earlier.Other scenarios exhibit minimal deviation from the original route.Typhoons penetrating deep inland can induce substantial storm surges,with the most extensive surge area situated in the western part of the Shandong Peninsula.展开更多
An analysis is conducted on the hydrodynamic response law of a single module maritime airport,considering the atmospheric variables of the wind and wave field.The analysis is based on hydroelastic theory and focuses o...An analysis is conducted on the hydrodynamic response law of a single module maritime airport,considering the atmospheric variables of the wind and wave field.The analysis is based on hydroelastic theory and focuses on the typhoon-driven very large floating structures(VLFS)configuration of the maritime airport.The findings indicate that the proposed method enables efficient information exchange between the fluid and structure domains through the coupling interface.The displacement of the maritime airport affected by the typhoon’s wave field is mostly determined by the direction of the flow.The wave loads acting on the floating body also influence the wave profile of the irregular wave and the deformation of the floating body.The von Mises stress distribution is not significant in all parts of the floating body.展开更多
In 2021,Cempaka,a tiny tropical cyclone,made landfall in China.As the TC intensified prior to landfall,the tropical cyclone size measured with precipitation decreased significantly.A numerical simulation was conducted...In 2021,Cempaka,a tiny tropical cyclone,made landfall in China.As the TC intensified prior to landfall,the tropical cyclone size measured with precipitation decreased significantly.A numerical simulation was conducted to examine the possible processes modulating the storm size.Azimuthally mean potential vorticity(PV)was found to decrease mainly in the middle to upper troposphere between 50-and 80-km radii.The PV budget results indicate that the advection and generation of mean PV associated with asymmetric processes,rather than the symmetric processes,primarily contributed to the decrease in mean PV.These asymmetric processes leading to a negative PV tendency were likely associated with inactive outer rainbands.In contrast,the tangential winds simultaneously expanded radially outward,possibly related to inner-core diabatic heating.The findings here emphasize the importance of outer rainband activity in tropical cyclone size change.展开更多
Frequent typhoons can significantly change the temperature,nutrient availability,and phytoplankton biomass in marginal seas.The oceanic response to typhoons is usually influenced by the features of the typhoon,among w...Frequent typhoons can significantly change the temperature,nutrient availability,and phytoplankton biomass in marginal seas.The oceanic response to typhoons is usually influenced by the features of the typhoon,among which the translational speed is critically important.By using a high resolution coupled physical-biological model,we investigated the response of the Yellow and East China seas(YECS)to two typhoons at different translational speeds,Muifa in August 2011 and Bolaven in August 2012.The model well reproduced the spatial and temporal variations of temperature,chlorophyll-a concentration over the YECS.Results show that typhoons with slower translational speeds uplift more deep water,leading to a more significant oceanic response.Divergence and convergence caused nutrient fluxes in opposite directions in the surface and bottom layers.Moreover,the nutrient flux in the bottom layer was greater than that in the surface layer.These phenomena are closely related to the spatial distribution of nutrients.Further studies show that the degree of ocean response to typhoons is highly correlated with the initial conditions of physical and biological elements of the upper ocean before the typhoon,as well as with ocean structure.Pretyphoon initial conditions of oceanic physical and ecological elements,mixed layer depth,and potential energy anomalies can all alter the degree of typhoon-induced oceanic response.This study emphasizes the important roles of the translational speed of typhoons and the initial oceanic conditions in the oceanic response to typhoons.展开更多
Tropical Cyclone (TC) activity is an important feature of China's climate that can have important impacts on precipitation and can cause extensive property damage. In particular, precipitation from TCs contributes...Tropical Cyclone (TC) activity is an important feature of China's climate that can have important impacts on precipitation and can cause extensive property damage. In particular, precipitation from TCs contributes a significant portion of overall precipitation. This study deals with typhoons that influence China and focuses on their impact on China's precipitation. Four aspects are examined in this research. Firstly, the study of influencing typhoon frequency reveals that the main season that typhoons affect China is from May to November, especially between July and September. The frequency of influencing typhoons was steady during the past 40 years. Secondly, inspection of the climatology of station typhoon precipitation shows that Hainan and the southeastern coastalmost regions are most frequently affected by typhoons, and most of the regions south of the Yangtze River are affected by typhoons each year. Meanwhile, during 1957-1996, most of the typhoon-influenced regions show decreasing trends in typhoon precipitation but only the trends in southern Northeast China are significant. Thirdly, examination of the typhoon cases shows that there exists it significant linear relationship between the precipitation volume and impacted area. Finally, study of variations of typhoon impacts on China's precipitation suggests that there exists a decreasing trend in the contribution of typhoon precipitation to overall precipitation, while total annual volume of typhoon precipitation decreases significantly during the period.展开更多
Axisymmetric bogus vortexes at sea level are usually used in the traditional bogus data assimilation (BDA) scheme. In the traditional scheme, the vortex could not accurately describe the specific characteristics of ...Axisymmetric bogus vortexes at sea level are usually used in the traditional bogus data assimilation (BDA) scheme. In the traditional scheme, the vortex could not accurately describe the specific characteristics of a typhoon, and the evolving real typhoon is forced to unreasonably adapt to this changeless vortex. For this reason, an asymmetrical typhoon bogus method with information blended from the analysis and the observation is put forward in this paper, in which the impact of the Subtropical High is also taken into consideration. With the fifth-generation Penn State/NCAR Mesoscale Model (MM5) and its adjoint model, a four-dimensional variational data assimilation (4D-Var) technique is employed to build a dynamic asymmetrical BDA scheme to assimilate different asymmetrical bogus vortexes at different time. The track and intensity of six surmner typhoons much influenced by the Subtropical High are simulated and the results are compared. It is shown that the improvement in track simulation in the new scheme is more significant than that in the traditional scheme. Moreover, the periods for which the track cannot be simulated well by the traditional scheme can be improved with the new scheme. The results also reveal that although the simulated typhoon intensity in the new scheme is generally weaker than that in the traditional scheme, this trend enables the new scheme to simulate, in the later period, closer-to-observation intensity than the traditional scheme. However, despite the fact that the observed intensity has been largely weakened, the simulated intensity at later periods of the BDA schemes is still very intensive, resulting in overly development of the typhoon during the simulation. The limitation to the simulation effect of the BDA scheme due to this condition needs to be further studied.展开更多
The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measur...The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.展开更多
Wave fields in Beibu Bay during Typhoon Damrey (2005) were simulated by SWAN wave model through inputting high resolution reanalysis wind fields data, current and water level data. Comparisons for wind input and wav...Wave fields in Beibu Bay during Typhoon Damrey (2005) were simulated by SWAN wave model through inputting high resolution reanalysis wind fields data, current and water level data. Comparisons for wind input and wave hindcast between observation and simulation show good consistency. Distributions of wave parameters such as wave height, wave period, wave length and wave direction under typhoon wind forcing were given. Also, the directional spectra related to the different position from the typhoon center were discussed. And at last, the variation and characteristics of observed frequency spectrum during the passage of Damrey were presented.展开更多
A two-month seabed-mounted observation(YSG1 area) was carried out in the western Yellow Sea Cold Water Mass(YSCWM) using an RDI-300 K acoustic Doppler current profiler(ADCP) placed at a water depth of 38 m in late sum...A two-month seabed-mounted observation(YSG1 area) was carried out in the western Yellow Sea Cold Water Mass(YSCWM) using an RDI-300 K acoustic Doppler current profiler(ADCP) placed at a water depth of 38 m in late summer, 2012. On August 2012, Typhoon Bolaven passed east of YSG1 with a maximum wind speed of 20 m s-1. The water depth, bottom temperature, and profile current velocities(including u, v and w components) were measured, and the results showed that the typhoon could induce horizontal current with speed greater than 70 cm s-1 in the water column, which is especially rare at below 20 meters above bottom(mab). The deepening velocity shear layer had an intense shear velocity of around 10 cm s-1 m-1, which indicated the deepening of the upper mixed layer. In the upper water column(above 20 mab), westward de-tide current with velocity greater than 30 cm s-1 was generated with the typhoon's onshore surge, and the direction of current movement shifted to become southward. In the lower water column, a possible pattern of eastward compensation current and delayed typhoon-driven current was demonstrated. During the typhoon, bottom temperature variation was changed into diurnal pattern because of the combined influence of typhoon and tidal current. The passage of Bolaven greatly intensified local sediment resuspension in the bottom layer. In addition, low-density particles constituted the suspended particulate matter(SPM) around 10 mab, which may be transported from the central South Yellow Sea by the typhoon. Overall, the intensive external force of the Typhoon Bolaven did not completely destroy the local thermocline, and most re-suspended sediments during the typhoon were restricted within the YSCWM.展开更多
文摘[Objective]Precipitation events caused by Super Typhoon Doksuri in Fujian Province were simulated and evaluated based on the WRF model to provide a reference for typhoon precipitation simulation and forecasting in southeast coastal areas of China.[Methods]The next-generation mesoscale numerical weather prediction model WRF V4.3(The Weather Research and Forecasting Model)was used to simulate the precipitation caused by Typhoon Doksuri in Fujian Province in 2023.Observations from 86 meteorological stations with hourly rainfall records were used to evaluate the model’s performance.Six evaluation indices were used,including the correlation coefficient(R),root mean square error(RMSE),mean absolute error(MAE),equitable threat score(ETS),probability of detection(POD),and false alarm ratio(FAR).[Results](1)The temporal and spatial evolution of precipitation during Typhoon Doksuri was effectively captured by the WRF model.Precipitation intensity increased gradually from July 27 to 29,2023,with the heaviest rainfall concentrated in the northern and eastern coastal areas of Fujian Province.(2)Significant differences in model performance were observed in terms of R,RMSE,and MAE.The largest errors occurred in Putian City,while smaller errors were found in southwestern Fujian Province.The evaluation result of all six indices showed that the WRF model performed best in simulating daily precipitation compared to hourly,three-hourly,six-hourly,and twelve-hourly precipitation.(3)The R95p index indicated that the WRF model successfully captured the overall spatial distribution of extreme precipitation.However,extreme precipitation intensity was overestimated in certain coastal areas.(4)Despite accurately identifying the coastal regions of Fujian as being most affected,the WRF model failed to accurately simulate the spatial distribution and intensity of precipitation.The simulated precipitation centers showed discrepancies when compared with the observed centers.[Conclusion]Although the WRF model underestimated hourly precipitation,it successfully captured the temporal evolution and spatial distribution of rainfall caused by Typhoon Doksuri in Fujian Province.It reproduced the heavy rainfall centers in central Fujian Province,with daily precipitation peaks reaching up to 350 mm.This highlighted the severity of extreme rainfall caused by Typhoon Doksuri.
基金Supported by the National Key Research and Development Program of China(Nos.2021YFC3101801,2023YFC3008200)the National Natural Science Foundation of China(Nos.42476219,41976200)+6 种基金the National Foreign Experts Program(No.S20240134)the Innovative Team Plan of the Department of Education of Guangdong Province(No.2023KCXTD015)the Tropical Ocean Environment in Western Coastal Waters Observation and Research Station of Guangdong Province(No.2024B1212040008)the Independent Research Project of the Southern Ocean Laboratory(No.SML2022SP301)the Shandong Innovation and Development Research Institute Think Tank Projectthe Guangdong Ocean University Scientific Research Program(No.060302032106)the Start-up Fund for Ph D Researchers(No.060302032104)。
文摘Typhoon Chaba was the most intense typhoon to strike western Guangdong since Typhoon Mujigae in 2015.According to the National Disaster Reduction Center of China,in the morning of July 7,2022,over 1.5 million people in Guangdong,Guangxi,and Hainan were affected by Typhoon Chaba.The typhoon also caused the“Fukui 001”ship to be in distress in the waters near Yangjiang,Guangdong,on July 2,resulting in big casualties.Studies have indicated that wind field forecast for Typhoon Chaba was not accurate.To better simulate typhoon events and assess their impacts,we proposed the use of a model wind field(Fujita-Takahashi)integrated with the Copernicus Marine and Environmental Monitoring Service(CMEMS)data to reconstruct effectively the overall wind field of Typhoon Chaba.The simulation result aligns well with the observations,particularly at the Dashu Island Station,showing consistent trends in wind speed changes.However,certain limitations were noted.The model shows that the attenuation of wind speed is slower when typhoon neared land than that observed,indicating that the model has a high simulation accuracy for the ocean wind field,but may have deviations near coastal areas.The result is accurate for open sea but deviated for near land due to the land friction effect.Therefore,we recommend to adjust the model to improve the accuracy for near coasts.
基金supported in part by the National Natural Science Foundation of China under Grant 42374037 and 41404031in part by the State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology under Grant SKLGED2022-3-5
文摘Previous studies have revealed that typhoons can affect the ionosphere.This paper uses GNSS observations provided by GNSS tracking stations of Taiwan region,ERA5 gravity wave dissipation products,and Himawari-8 band 07 brightness temperature observation data to analyze the impact of Typhoon Meranti on Taiwan region's ionosphere from September 13 to 15,2016.In addition to the daily effects of traveling ionospheric disturbances(TIDs),TIDs of various intensities caused by Meranti-induced gravity waves were observed during this period,which is inseparable from the state of the typhoon and the topographic features during its progress.The ionospheric disturbance caused by the edge of a typhoon is usually larger than that at the typhoon eye.When the typhoon approached Taiwan region with high intensity on September 14,it was observed that the gravity waves caused by the typhoon had a wavelength of about 174-293 km,a period of 13.5-23.5 min,and a propagation speed of 142-302 m/s.When the vortex structure of a typhoon interacts with complex surfaces such as mountains,it is easier to excite more medium-scale gravity waves.The origin that excites gravity waves and causes ionospheric anomalies is different from the location of the typhoon eye and changes over time.The gravity waves caused by the typhoon lasted for three days in the central mountains of Taiwan region.Still,background wind conditions restricted the propagation of gravity waves from the mesosphere to the thermosphere and led to TID predominantly concentrated between 06:00 and 13:00 UT each day.
基金National Natural Science Foundation of China(42375012)China Meteorological Administration Foundation(CXFZ2025J023)。
文摘Understanding the factors that control typhoon rainfall distribution is critical for improving rainfall forecasting,especially for landfall typhoons. This study investigated the impact of typhoon size on rainfall characteristics at landfall in eastern coast of China. Typhoons Ampil(2018) and Rumbia(2018), which had similar intensities, were investigated to explore the connection between storm size and rainfall. The larger cyclonic wind field in Typhoon Rumbia led to greater vorticity and broader convergence compared to Typhoon Ampil, along with an ascending region outside the eyewall, which promoted more vigorous rainbands. Rumbia′s larger size exhibited greater outer-core radial vorticity advection relative to Ampil. This maintained its extensive outer-core wind field and intensified outer rainband development. Consequently,Rumbia generated more extensive and prolonged rainfall post-landfall compared to Ampil. A composite analysis of typhoons making landfall in eastern China(2001-2021) further examines the statistical correlation between typhoon size and rainfall distribution. Results indicate that larger typhoons are more likely to generate heavier and more spatially extensive rainfall in regions beyond their eyewalls. These findings highlight that typhoon size significantly regulates rainfall evolution during landfall, underscoring the necessity of incorporating this parameter into operational rainfall forecasting models for landfalling typhoons.
基金supported by the National Natural Science Foundation of China(Grant No.U2142201)the Fengyun Application Pion eering Project(Grant No.FY-APP-ZX-2022.01)。
文摘Measurements from a hyperspectral infrared(HIR) sounder onboard a satellite in geostationary orbit not only provide atmospheric thermodynamic information,but also can be used to infer dynamic information with high temporal resolution.Radiance measurements from the Geostationary Interferometric Infrared Sounder(GIIRS),obtained with 15-min temporal resolution during Typhoon Maria(2018) and 30-min temporal resolution during Typhoon Lekima(2019),were used to derive three-dimensional(3D) horizontal winds by tracking the motion of atmospheric moisture.This work focused on the impact of assimilation of 3D winds on typhoon analyses and forecasts using the operational NWP model of the China Meteorological Administration(CMA-MESO),and improved understanding of the potential benefits of assimilating dynamic information from geostationary sounder data with higher temporal resolution.The standard deviation of the observations minus simulations revealed that the accuracy of the derived 3D winds with 15-min resolution was higher than that of derived winds with 30-min resolution.Experiments showed that the assimilation system can effectively absorb the information of the derived 3D winds,and that dynamic information from clear-sky areas can be transferred to typhoon areas.In typhoon prediction,assimilation of the derived 3D winds had greatest influence on the typhoon track,and less influence on the maximum wind speed.Assimilation of the derived 3D winds reduced the average track error by 17.4% for Typhoon Maria(2018) and by 3.5% for Typhoon Lekima(2019) during their entire 36-h forecasts initiated at different times.Assimilation of GIIRS dynamic information can substantially improve forecasts of heavy precipitation by CMAMESO.Results indicate that the assimilation of dynamic information from high-temporal-resolution geostationary HIR sounder data adds value for improved numerical weather prediction.
基金Supported by the Foundation Enhancement Program Project"Key Technologies for Analytical Traceability and Numerical Modeling of Fluctuations in the Middle and Upper Atmosphere"(2022-JCJQ-JJ-0882).
文摘Typhoons,as strong convective systems,can excite multi-scale atmospheric gravity waves that travel long distances,and play an important role in momentum and energy transmission between the middle and upper atmosphere.In this paper,the research progress in the observation techniques,generation mechanism and propagation characteristics of typhoon-induced gravity waves were systematically reviewed.These studies show that based on the combined application of ground-based and space-based observation(sounding balloons,airglow imaging,and satellite remote sensing)and reanalysis data(such as ERA5),with the aid of ray tracing theory and numerical simulation technology,the mechanism of typhoon induced gravity waves and its dynamic characteristics in the middle and upper atmosphere have been better revealed.At present,there are still some insufficiencies in the fields of propagation path tracking of gravity waves,terrain multi-scale effect modeling and parameterization of inertial gravity waves,which need to be further studied in the future.
基金supported by the National Science and Technology Council(NSTC),Taiwan(NSTC 114-2119-M-019-003).
文摘Amid growing typhoon risks driven by climate change with projected shifts in precipitation intensity and temperature patterns,Taiwan faces increasing challenges in flood risk.In response,this study proposes a geographic information system(GIS)-based artificial intelligence(AI)model to assess flood susceptibility in Keelung City,integrating geospatial and hydrometeorological data collected during Typhoon Krathon(2024).The model employs the random forest(RF)algorithm,using seven environmental variables excluding average elevation,slope,topographic wetness index(TWI),frequency of cumulative rainfall threshold exceedance,normalized difference vegetation index(NDVI),flow accumulation,and drainage density,with the number of flood events per unit area as the output.The RF model demonstrates high accuracy,achieving the accuracy of 97.45%.Feature importance indicates that NDVI is the most critical predictor,followed by flow accumulation,TWI,and rainfall frequency.Furthermore,under the IPCC AR5 RCP8.5 scenarios,projected 50-year return period rainfall in Keelung City increases by 42.40%-64.95%under+2℃to+4℃warming.These projections were integrated into the RF model to simulate future flood susceptibility.Results indicate two districts in the study area face the greatest increase in flood risk,emphasizing the need for targeted climate adaptation in vulnerable urban areas.
基金supported by the National Natural Science Foundation of China(Nos.42122049 and 42377104)the Basic Strengthening Research Program(No.2021-JCJQ-JJ-1058)+1 种基金the Strategy Priority Research Programof Chinese Academy of Sciences(No.XDB0760403)the National Key Scientific and Technological Infrastructure project"Earth System Science Numerical Simulator Facility"(EarthLab)the Innovation Foundation of CPML/CMA(No.2024CPML-C027).
文摘The extraordinary Super Typhoon(STY)Muifa(2022)made landfall four times and had a significant impact on the coastal regions from south to north of China.Although previous studies have demonstrated the‘pumping effect'of typhoons on the enhancement of reactive nitrogen(Nr)wet deposition over the ocean,it is uncertain how Nr deposition is influenced by typhoons thatmake prolonged mechanism due tomultiple landfalls.In this study,theNr wet deposition induced by STYMuifawas investigated fromthe perspective of in-and below-cloud processes based on the Nested Air Quality Prediction Modeling System with an online tracer-tagging module.High volume of Nr wet deposition caused by Muifa migrated from south to north,passing over half of China's coastal cities.Compared to the typhoon generated vicinity,both mean values of the oxidized and reduced nitrogen wet deposition over the Typhoon affected regions were increased about 20.4 and 66.1 times after landfall even with the similar rainfall.Emissions from the four landfall areas of China contributed to the majority of Nr wet deposition with significantly enhanced proportion of in-cloud deposition.The strong pumping effect of typhoon to the Nr deposition along the coastal areas and the risk of ecosystem effects requires further researches and higher demands on the control of nitrogen emissions of National Industrial Park,which usually located in China's coastal cities.
基金supported by the National Natural Science Foundation of China[grant numbers 42192553 and 41922036]the Fundamental Research Funds for the Central Universities–Cemac“GeoX”Interdisciplinary Program[grant number 020714380207]。
文摘While steady improvements have been achieved for the track forecasts of typhoons,there has been a lack of improvement for intensity forecasts.One challenge for intensity forecasts is to capture the rapid intensification(RI),whose nonlinear characteristics impose great difficulties for numerical models.The ensemble sensitivity analysis(ESA)method is used here to analyze the initial conditions that contribute to typhoon intensity forecasts,especially with RI.Six RI processes from five typhoons(Chaba,Haima,Meranti,Sarika,and Songda)in 2016,are applied with ESA,which also gives a composite initial condition that favors subsequent RI.Results from individual cases have generally similar patterns of ESA,but with different magnitudes,when various cumulus parameterization schemes are applied.To draw the initial conditions with statistical significance,sample-mean azimuthal components of ESA are obtained.Results of the composite sensitivity show that typhoons that experience RI in 24 h favor enhanced primary circulation from low to high levels,intensified secondary circulation with increased radial inflow at lower levels and increased radial outflow at upper levels,a prominent warm core at around 300 hPa,and increased humidity at low levels.As the forecast lead time increases,the patterns of ESA are retained,while the sensitivity magnitudes decay.Given the general and quantitative composite sensitivity along with associated uncertainties for different cumulus parameterization schemes,appropriate sampling of the composite sensitivity in numerical models could be beneficial to capturing the RI and improving the forecasting of typhoon intensity.
基金supported by the project of National Natural Science Foundation of China(Grant No.42371203 and U21A2032)the project Financial Fund of Sichuan Institute of Geological Survey(SCIGSCZDXM-2024008)+1 种基金Sichuan Provincial Science and Technology Department Program Funding(No.2025YFHZ0010)Science and Technology Program of Aba City(NO.R24YYJSYJ0001)。
文摘The 2019 Typhoon Lekima triggered extensive landslides in Zhejiang Province.To explore the impact of typhoon paths on the distribution of landslide susceptibility,this study proposes a spatiotemporal zoning assessment framework based on typhoon paths and inner rainbands.According to the typhoon landing path and its rainfall impact range,the study area is divided into the typhoon event period(TEP)and the annual non-typhoon period(ANP).The model uses 14 environmental factors,with the only difference between TEP and ANP being the rainfall index:TEP uses 48-hour rainfall during the typhoon,while ANP uses multi-year average annual rainfall.Modeling and comparative analysis were conducted using six machine learning models including random forest(RF)and support vector machine(SVM).The results show that the distribution pattern of high-risk landslide areas during TEP is significantly correlated with typhoon intensity:when the intensity is level 12,high-risk areas are radially distributed;at levels 10-11,they tend to concentrate asymmetrically along the coast;and when the intensity drops to below level 9,the overall susceptibility decreases significantly.During ANP,the distribution of landslides is relatively uniform with no obvious spatial concentration.Analysis on the factor contribution rate indicates that the rainfall weight in TEP is as high as 32.1%,making it the dominant factor;in ANP,the rainfall weight drops to 13.6%while the influence of factors such as slope and topographic wetness index increases,revealing differences in landslide formation mechanisms between the two periods.This study demonstrates that the spatiotemporal zoning method based on typhoon paths can effectively characterize the spatial susceptibility patterns of landslides and improve disaster identification capabilities under extreme weather conditions.The finally generated annual susceptibility zoning map divides the study area into four types of risk regions,providing a reference for dynamic monitoring and differentiated risk management of landslides in typhoon-prone areas.
基金supported by the Yantai Science,Technology and Innovation Development Programme(Nos.2023 JCYJ094,2023JCYJ097)the Major Research Grant from the Natural Science Foundation of China(NSFC)(No.42330406)。
文摘To investigate the effect of typhoon path translation on storm surge augmentation,the storm surge during Typhoon 1909 Lekima in the East China Sea is simulated using Delft 3D.The model sets up three scenarios to analyze the path’s effect on storm surge in the Shandong Peninsula Sea by shifting the typhoon path to the east and west.Results show that the areas of maximum storm surge in each scenario are located on both sides of the typhoon path and shift along with its movement.When the typhoon path shifts eastward,the maximum storm surge intensifies at Zhifu Island station 8 hours earlier.Conversely,a westward shift in the typhoon track leads to a maximum storm surge increase at Shidao Island station 12 hours earlier.Other scenarios exhibit minimal deviation from the original route.Typhoons penetrating deep inland can induce substantial storm surges,with the most extensive surge area situated in the western part of the Shandong Peninsula.
基金supported in part by the National Natural Science Foundation of China(No.51761165022)the Natural Science Foundation of Jiangsu Province(No.BK20210309)the Jiangsu Graduate Research and Practice Innovation Program(No.KYCX21_0234)。
文摘An analysis is conducted on the hydrodynamic response law of a single module maritime airport,considering the atmospheric variables of the wind and wave field.The analysis is based on hydroelastic theory and focuses on the typhoon-driven very large floating structures(VLFS)configuration of the maritime airport.The findings indicate that the proposed method enables efficient information exchange between the fluid and structure domains through the coupling interface.The displacement of the maritime airport affected by the typhoon’s wave field is mostly determined by the direction of the flow.The wave loads acting on the floating body also influence the wave profile of the irregular wave and the deformation of the floating body.The von Mises stress distribution is not significant in all parts of the floating body.
基金jointly supported by the National Natural Science Foundation of China[grant numbers U2342202 and 42175005]the Qing Lan Project[grant number R2023Q06]。
文摘In 2021,Cempaka,a tiny tropical cyclone,made landfall in China.As the TC intensified prior to landfall,the tropical cyclone size measured with precipitation decreased significantly.A numerical simulation was conducted to examine the possible processes modulating the storm size.Azimuthally mean potential vorticity(PV)was found to decrease mainly in the middle to upper troposphere between 50-and 80-km radii.The PV budget results indicate that the advection and generation of mean PV associated with asymmetric processes,rather than the symmetric processes,primarily contributed to the decrease in mean PV.These asymmetric processes leading to a negative PV tendency were likely associated with inactive outer rainbands.In contrast,the tangential winds simultaneously expanded radially outward,possibly related to inner-core diabatic heating.The findings here emphasize the importance of outer rainband activity in tropical cyclone size change.
基金Supported by the National Natural Science Foundation of China(Nos.42006018,42276009,42376199)the Open Fund Project of the Key Laboratory of Ocean Observation and Information of Hainan Province(No.HKLOOI-OF-2023-03)the Tianjin Natural Science Foundation(Nos.21JCYBJC00500,21JCQNJC00590)。
文摘Frequent typhoons can significantly change the temperature,nutrient availability,and phytoplankton biomass in marginal seas.The oceanic response to typhoons is usually influenced by the features of the typhoon,among which the translational speed is critically important.By using a high resolution coupled physical-biological model,we investigated the response of the Yellow and East China seas(YECS)to two typhoons at different translational speeds,Muifa in August 2011 and Bolaven in August 2012.The model well reproduced the spatial and temporal variations of temperature,chlorophyll-a concentration over the YECS.Results show that typhoons with slower translational speeds uplift more deep water,leading to a more significant oceanic response.Divergence and convergence caused nutrient fluxes in opposite directions in the surface and bottom layers.Moreover,the nutrient flux in the bottom layer was greater than that in the surface layer.These phenomena are closely related to the spatial distribution of nutrients.Further studies show that the degree of ocean response to typhoons is highly correlated with the initial conditions of physical and biological elements of the upper ocean before the typhoon,as well as with ocean structure.Pretyphoon initial conditions of oceanic physical and ecological elements,mixed layer depth,and potential energy anomalies can all alter the degree of typhoon-induced oceanic response.This study emphasizes the important roles of the translational speed of typhoons and the initial oceanic conditions in the oceanic response to typhoons.
文摘Tropical Cyclone (TC) activity is an important feature of China's climate that can have important impacts on precipitation and can cause extensive property damage. In particular, precipitation from TCs contributes a significant portion of overall precipitation. This study deals with typhoons that influence China and focuses on their impact on China's precipitation. Four aspects are examined in this research. Firstly, the study of influencing typhoon frequency reveals that the main season that typhoons affect China is from May to November, especially between July and September. The frequency of influencing typhoons was steady during the past 40 years. Secondly, inspection of the climatology of station typhoon precipitation shows that Hainan and the southeastern coastalmost regions are most frequently affected by typhoons, and most of the regions south of the Yangtze River are affected by typhoons each year. Meanwhile, during 1957-1996, most of the typhoon-influenced regions show decreasing trends in typhoon precipitation but only the trends in southern Northeast China are significant. Thirdly, examination of the typhoon cases shows that there exists it significant linear relationship between the precipitation volume and impacted area. Finally, study of variations of typhoon impacts on China's precipitation suggests that there exists a decreasing trend in the contribution of typhoon precipitation to overall precipitation, while total annual volume of typhoon precipitation decreases significantly during the period.
基金Natural Science Foundation of China (10871099 40805046+2 种基金 40830958)Specialized Projects of Public Welfare Industry (Meteorological Sector) (GYH(QX)2007-6-15)973 Program of National Key Foundamental Research and Development (2009CB421502)
文摘Axisymmetric bogus vortexes at sea level are usually used in the traditional bogus data assimilation (BDA) scheme. In the traditional scheme, the vortex could not accurately describe the specific characteristics of a typhoon, and the evolving real typhoon is forced to unreasonably adapt to this changeless vortex. For this reason, an asymmetrical typhoon bogus method with information blended from the analysis and the observation is put forward in this paper, in which the impact of the Subtropical High is also taken into consideration. With the fifth-generation Penn State/NCAR Mesoscale Model (MM5) and its adjoint model, a four-dimensional variational data assimilation (4D-Var) technique is employed to build a dynamic asymmetrical BDA scheme to assimilate different asymmetrical bogus vortexes at different time. The track and intensity of six surmner typhoons much influenced by the Subtropical High are simulated and the results are compared. It is shown that the improvement in track simulation in the new scheme is more significant than that in the traditional scheme. Moreover, the periods for which the track cannot be simulated well by the traditional scheme can be improved with the new scheme. The results also reveal that although the simulated typhoon intensity in the new scheme is generally weaker than that in the traditional scheme, this trend enables the new scheme to simulate, in the later period, closer-to-observation intensity than the traditional scheme. However, despite the fact that the observed intensity has been largely weakened, the simulated intensity at later periods of the BDA schemes is still very intensive, resulting in overly development of the typhoon during the simulation. The limitation to the simulation effect of the BDA scheme due to this condition needs to be further studied.
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA04Z416)the Key Project of the National Natural Science Foundation of China(No.50538020)+2 种基金the National Science Fund for Distinguished Young Scholars(No.50725828)the National Natural Science Foundation of China for Young Scholars(No.50608017)the Ph.D. Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.
文摘Wave fields in Beibu Bay during Typhoon Damrey (2005) were simulated by SWAN wave model through inputting high resolution reanalysis wind fields data, current and water level data. Comparisons for wind input and wave hindcast between observation and simulation show good consistency. Distributions of wave parameters such as wave height, wave period, wave length and wave direction under typhoon wind forcing were given. Also, the directional spectra related to the different position from the typhoon center were discussed. And at last, the variation and characteristics of observed frequency spectrum during the passage of Damrey were presented.
基金supported by the National Natural Science Foundation of China (Nos. 41806190, 41030856)National Program on Key Basic Research Project of China (973 Program, No. 2005CB422304)+3 种基金Qingdao Postdoctoral Application Research Project Fundingthe Fundamental Research Funds for the Central Universities (Nos. 20171305, 201562030,20176 2015, 201822027)the Project of Taishan Scholarthe Shared Voyage of National Nature Science Foundation of China for their support
文摘A two-month seabed-mounted observation(YSG1 area) was carried out in the western Yellow Sea Cold Water Mass(YSCWM) using an RDI-300 K acoustic Doppler current profiler(ADCP) placed at a water depth of 38 m in late summer, 2012. On August 2012, Typhoon Bolaven passed east of YSG1 with a maximum wind speed of 20 m s-1. The water depth, bottom temperature, and profile current velocities(including u, v and w components) were measured, and the results showed that the typhoon could induce horizontal current with speed greater than 70 cm s-1 in the water column, which is especially rare at below 20 meters above bottom(mab). The deepening velocity shear layer had an intense shear velocity of around 10 cm s-1 m-1, which indicated the deepening of the upper mixed layer. In the upper water column(above 20 mab), westward de-tide current with velocity greater than 30 cm s-1 was generated with the typhoon's onshore surge, and the direction of current movement shifted to become southward. In the lower water column, a possible pattern of eastward compensation current and delayed typhoon-driven current was demonstrated. During the typhoon, bottom temperature variation was changed into diurnal pattern because of the combined influence of typhoon and tidal current. The passage of Bolaven greatly intensified local sediment resuspension in the bottom layer. In addition, low-density particles constituted the suspended particulate matter(SPM) around 10 mab, which may be transported from the central South Yellow Sea by the typhoon. Overall, the intensive external force of the Typhoon Bolaven did not completely destroy the local thermocline, and most re-suspended sediments during the typhoon were restricted within the YSCWM.