In the present paper,we give a systematic study of the discrete correspondence the-ory and topological correspondence theory of modal meet-implication logic and moda1 meet-semilattice logic,in the semantics provided i...In the present paper,we give a systematic study of the discrete correspondence the-ory and topological correspondence theory of modal meet-implication logic and moda1 meet-semilattice logic,in the semantics provided in[21].The special features of the present paper include the following three points:the first one is that the semantic structure used is based on a semilattice rather than an ordinary partial order,the second one is that the propositional vari-ables are interpreted as filters rather than upsets,and the nominals,which are the“first-order counterparts of propositional variables,are interpreted as principal filters rather than principal upsets;the third one is that in topological correspondence theory,the collection of admissi-ble valuations is not closed under taking disjunction,which makes the proof of the topological Ackermann 1emma different from existing settings.展开更多
In the age of big data,ensuring data privacy while enabling efficient encrypted data retrieval has become a critical challenge.Traditional searchable encryption schemes face difficulties in handling complex semantic q...In the age of big data,ensuring data privacy while enabling efficient encrypted data retrieval has become a critical challenge.Traditional searchable encryption schemes face difficulties in handling complex semantic queries.Additionally,they typically rely on honest but curious cloud servers,which introduces the risk of repudiation.Furthermore,the combined operations of search and verification increase system load,thereby reducing performance.Traditional verification mechanisms,which rely on complex hash constructions,suffer from low verification efficiency.To address these challenges,this paper proposes a blockchain-based contextual semantic-aware ciphertext retrieval scheme with efficient verification.Building on existing single and multi-keyword search methods,the scheme uses vector models to semantically train the dataset,enabling it to retain semantic information and achieve context-aware encrypted retrieval,significantly improving search accuracy.Additionally,a blockchain-based updatable master-slave chain storage model is designed,where the master chain stores encrypted keyword indexes and the slave chain stores verification information generated by zero-knowledge proofs,thus balancing system load while improving search and verification efficiency.Finally,an improved non-interactive zero-knowledge proof mechanism is introduced,reducing the computational complexity of verification and ensuring efficient validation of search results.Experimental results demonstrate that the proposed scheme offers stronger security,balanced overhead,and higher search verification efficiency.展开更多
High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes an...High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet.展开更多
Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods,which often demand extensive computational resources and stru...Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods,which often demand extensive computational resources and struggle with diverse data acquisition techniques.This research presents a novel approach for vehicle classification and recognition in aerial image sequences,integrating multiple advanced techniques to enhance detection accuracy.The proposed model begins with preprocessing using Multiscale Retinex(MSR)to enhance image quality,followed by Expectation-Maximization(EM)Segmentation for precise foreground object identification.Vehicle detection is performed using the state-of-the-art YOLOv10 framework,while feature extraction incorporates Maximally Stable Extremal Regions(MSER),Dense Scale-Invariant Feature Transform(Dense SIFT),and Zernike Moments Features to capture distinct object characteristics.Feature optimization is further refined through a Hybrid Swarm-based Optimization algorithm,ensuring optimal feature selection for improved classification performance.The final classification is conducted using a Vision Transformer,leveraging its robust learning capabilities for enhanced accuracy.Experimental evaluations on benchmark datasets,including UAVDT and the Unmanned Aerial Vehicle Intruder Dataset(UAVID),demonstrate the superiority of the proposed approach,achieving an accuracy of 94.40%on UAVDT and 93.57%on UAVID.The results highlight the efficacy of the model in significantly enhancing vehicle detection and classification in aerial imagery,outperforming existing methodologies and offering a statistically validated improvement for intelligent traffic monitoring systems compared to existing approaches.展开更多
This paper proposes a collaborative design model based on operation semantics in a distributed computer-aided design (CAD) environment. The goal is to reduce time consumption in data format conversion and the requirem...This paper proposes a collaborative design model based on operation semantics in a distributed computer-aided design (CAD) environment. The goal is to reduce time consumption in data format conversion and the requirement of network bandwidth so as to improve the cooperative ability and the synchronization efficiency. Firstly, real-time collaborative design is reviewed and three kinds of real-time collaborative design models are discussed. Secondly, the concept of operation semantics is defined and the framework of an operation semantics model is presented. The operation semantics carries the original design data and actual operation process to express design intent and operation activity in conventional CAD systems. Finally, according to the operation semantics model, a CAD operation primitive is defined which can be retrieved from and mapped to the local CAD system operation commands; a distributed CAD collaborative architecture based on the model is presented, and an example is given to verify the model.展开更多
A global semantics matching and QoS-awareness service selection are proposed when aimed at a web services composition process.Both QoS-aware matching and global semantic matching are considered during the global match...A global semantics matching and QoS-awareness service selection are proposed when aimed at a web services composition process.Both QoS-aware matching and global semantic matching are considered during the global matching.When there are demands for global semantic matching and QoS of service composition,a concrete service set which meets the demands is selected for the whole service composition process and an optimal solution is also achieved.A QoS model is built and the corresponding evaluation method is given for the matching of the service composition process.Based on them,a genetic algorithm is proposed to achieve the maximal global semantic matching degree and fulfill the QoS requirements for the whole service composition process.Experimental results and analysis show that the algorithm is feasible and effective for semantics and QoS-aware service matching.展开更多
What and how we translate are questions often argued about. No matter what kind of answers one may give, priority in translation should be granted to meaning, especially those meanings that exist in all concerned lang...What and how we translate are questions often argued about. No matter what kind of answers one may give, priority in translation should be granted to meaning, especially those meanings that exist in all concerned languages. This research defines them as universal sememes, and the study of them as universal semantics, of which applications are also briefly looked into.展开更多
Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning dis...Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zeroshot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot finegrained classification.展开更多
In Chinese question answering system, because there is more semantic relation in questions than that in query words, the precision can be improved by expanding query while using natural language questions to retrieve ...In Chinese question answering system, because there is more semantic relation in questions than that in query words, the precision can be improved by expanding query while using natural language questions to retrieve documents. This paper proposes a new approach to query expansion based on semantics and statistics Firstly automatic relevance feedback method is used to generate a candidate expansion word set. Then the expanded query words are selected from the set based on the semantic similarity and seman- tic relevancy between the candidate words and the original words. Experiments show the new approach is effective for Web retrieval and out-performs the conventional expansion approaches.展开更多
Spatio-temporal semantics based on "object views" or "event views" has few abilities to represent and model the continuity and gradual oceanic phenomena or objects, which seriously limits the specific marine appli...Spatio-temporal semantics based on "object views" or "event views" has few abilities to represent and model the continuity and gradual oceanic phenomena or objects, which seriously limits the specific marine applications and knowledge discovery and data mining, so this paper proposes a hierarchical abstraction semantics with "marine spatio-temporal process-life span phases-evolution sequences--state units" and process objects included by level with "marine process objects--phase objects--sequence object---state objects" with the oceanic process characteristics into the marine process semantics. In addition, this paper designs the storage and representation of marine process objects using the backus normal forms (BNF) and abstract data type (ADT). Base on E1 Nifio Southern Oscilation (ENSO) index and Chinese rain gauging station data, this paper also gives a case of study. The spatio-temporal analysis between ENSO process and Chinese rainfall anomalies shows that the marine spatio-temporal semantics not only can illustrate the spatial distribution of Chinese rainfall anomalies in different time scales at ENSO process, life span phases and state units, but also analyze the dynamic changes of Chinese rainfall anomalies in different life span phases or state units within ENSO evolution.展开更多
There are mainly four kinds of models to record and deal with historical information.By taking them as reference,the spatio-temporal model based on event semantics is proposed.In this model,according to the way for de...There are mainly four kinds of models to record and deal with historical information.By taking them as reference,the spatio-temporal model based on event semantics is proposed.In this model,according to the way for describing an event,all the information are divided into five domains.This paper describes the model by using the land parcel change in the cadastral information system,and expounds the model by using five tables corresponding to the five domains.With the aid of this model,seven examples are given on historical query,trace back and recurrence.This model can be implemented either in the extended relational database or in the object-oriented database.展开更多
Existing multi-view three-dimensional(3 D) reconstruction methods can only capture single type of feature from input view, failing to obtain fine-grained semantics for reconstructing the complex shapes. They rarely ex...Existing multi-view three-dimensional(3 D) reconstruction methods can only capture single type of feature from input view, failing to obtain fine-grained semantics for reconstructing the complex shapes. They rarely explore the semantic association between input views, leading to a rough 3 D shape. To address these challenges, we propose a semantics-aware transformer(SATF) for 3 D reconstruction. It is composed of two parallel view transformer encoders and a point cloud transformer decoder, and takes two red, green and blue(RGB) images as input and outputs a dense point cloud with richer details. Each view transformer encoder can learn a multi-level feature, facilitating characterizing fine-grained semantics from input view. The point cloud transformer decoder explores a semantically-associated feature by aligning the semantics of two input views, which describes the semantic association between views. Furthermore, it can generate a sparse point cloud using the semantically-associated feature. At last, the decoder enriches the sparse point cloud for producing a dense point cloud with richer details. Extensive experiments on the Shape Net dataset show that our SATF outperforms the state-of-the-art methods.展开更多
Due to lack of strictly defined formal semantics, an UML activity diagram is unsuitable for the tasks of formal analysis, verification and assertion on the system it describes. In this paper, Petri net is used to defi...Due to lack of strictly defined formal semantics, an UML activity diagram is unsuitable for the tasks of formal analysis, verification and assertion on the system it describes. In this paper, Petri net is used to define the formal semantics of an UML activity diagram containing object flow states, laying a foundation for the precise description and analysis of a workflow system.展开更多
Unsupervised image-to-image translation is a challenging task for computer vision. The goal of image translation is to learn a mapping between two domains, without corresponding image pairs. Many previous works only f...Unsupervised image-to-image translation is a challenging task for computer vision. The goal of image translation is to learn a mapping between two domains, without corresponding image pairs. Many previous works only focused on image-level translation but ignored image features processing, which led to a certain semantics loss, such as the changes of the background of the generated image, partial transformation, and so on. In this work, we propose a method of image-to-image translation based on generative adversarial nets(GANs). We use autoencoder structure to extract image features in the generator and add semantic consistency loss on extracted features to maintain the semantic consistency of the generated image. Self-attention mechanism at the end of generator is used to obtain long-distance dependency in image. At the same time, as expanding the convolution receptive field, the quality of the generated image is enhanced. Quantitative experiment shows that our method significantly outperforms previous works. Especially on images with obvious foreground, our model shows an impressive improvement.展开更多
CAD model retrieval based on functional semantics is more significant than content-based 3D model retrieval during the mechanical conceptual design phase. However, relevant research is still not fully discussed. There...CAD model retrieval based on functional semantics is more significant than content-based 3D model retrieval during the mechanical conceptual design phase. However, relevant research is still not fully discussed. Therefore, a functional semantic-based CAD model annotation and retrieval method is proposed to support mechanical conceptual design and design reuse, inspire designer creativity through existing CAD models, shorten design cycle, and reduce costs. Firstly, the CAD model functional semantic ontology is constructed to formally represent the functional semantics of CAD models and describe the mechanical conceptual design space comprehensively and consistently. Secondly, an approach to represent CAD models as attributed adjacency graphs(AAG) is proposed. In this method, the geometry and topology data are extracted from STEP models. On the basis of AAG, the functional semantics of CAD models are annotated semi-automatically by matching CAD models that contain the partial features of which functional semantics have been annotated manually, thereby constructing CAD Model Repository that supports model retrieval based on functional semantics. Thirdly, a CAD model retrieval algorithm that supports multi-function extended retrieval is proposed to explore more potential creative design knowledge in the semantic level. Finally, a prototype system, called Functional Semantic-based CAD Model Annotation and Retrieval System(FSMARS), is implemented. A case demonstrates that FSMARS can successfully botain multiple potential CAD models that conform to the desired function. The proposed research addresses actual needs and presents a new way to acquire CAD models in the mechanical conceptual design phase.展开更多
Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges...Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges mentioned above with a single model.To tackle this dilemma,this paper proposes spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting(STSIGMA),an efficient end-to-end method to jointly and accurately perceive the AD environment and forecast the trajectories of the surrounding traffic agents within a unified framework.ST-SIGMA adopts a trident encoder-decoder architecture to learn scene semantics and agent interaction information on bird’s-eye view(BEV)maps simultaneously.Specifically,an iterative aggregation network is first employed as the scene semantic encoder(SSE)to learn diverse scene information.To preserve dynamic interactions of traffic agents,ST-SIGMA further exploits a spatio-temporal graph network as the graph interaction encoder.Meanwhile,a simple yet efficient feature fusion method to fuse semantic and interaction features into a unified feature space as the input to a novel hierarchical aggregation decoder for downstream prediction tasks is designed.Extensive experiments on the nuScenes data set have demonstrated that the proposed ST-SIGMA achieves significant improvements compared to the state-of-theart(SOTA)methods in terms of scene perception and trajectory forecasting,respectively.Therefore,the proposed approach outperforms SOTA in terms of model generalisation and robustness and is therefore more feasible for deployment in realworld AD scenarios.展开更多
Starting with a simple presentation of location determination techniques, physical location and geographic location as two common kinds of location description methods are discussed. The semantic location concept is t...Starting with a simple presentation of location determination techniques, physical location and geographic location as two common kinds of location description methods are discussed. The semantic location concept is then introduced and a correction is given, which especially emphasizes that location property is an important part of semantic location. By analyzing the connotation and extension of every geographic location, what should be contained in a location property is determined. Using a hierarchical model, the relations and associations among locations are clearly described. To realize a formalized description of semantic location, an ontology technique that can adequately describe semantic information of location is used. Organized by ontology web language, a location ontology model allows semantic location to be read and processed by computer. The location ontology model realizes the knowledge description of location information and establishes an important foundation to personalized preference services in location based services.展开更多
基金supported by the Chinese Ministry of Education of Humanities and Social Science Project(23YJC72040003)the Key Project of Chinese Ministry of Education(22JJD720021)supported by the Natural Science Foundation of Shandong Province,China(project number:ZR2023QF021)。
文摘In the present paper,we give a systematic study of the discrete correspondence the-ory and topological correspondence theory of modal meet-implication logic and moda1 meet-semilattice logic,in the semantics provided in[21].The special features of the present paper include the following three points:the first one is that the semantic structure used is based on a semilattice rather than an ordinary partial order,the second one is that the propositional vari-ables are interpreted as filters rather than upsets,and the nominals,which are the“first-order counterparts of propositional variables,are interpreted as principal filters rather than principal upsets;the third one is that in topological correspondence theory,the collection of admissi-ble valuations is not closed under taking disjunction,which makes the proof of the topological Ackermann 1emma different from existing settings.
基金supported in part by the National Natural Science Foundation of China under Grant 62262073in part by the Yunnan Provincial Ten Thousand People Program for Young Top Talents under Grant YNWR-QNBJ-2019-237in part by the Yunnan Provincial Major Science and Technology Special Program under Grant 202402AD080002.
文摘In the age of big data,ensuring data privacy while enabling efficient encrypted data retrieval has become a critical challenge.Traditional searchable encryption schemes face difficulties in handling complex semantic queries.Additionally,they typically rely on honest but curious cloud servers,which introduces the risk of repudiation.Furthermore,the combined operations of search and verification increase system load,thereby reducing performance.Traditional verification mechanisms,which rely on complex hash constructions,suffer from low verification efficiency.To address these challenges,this paper proposes a blockchain-based contextual semantic-aware ciphertext retrieval scheme with efficient verification.Building on existing single and multi-keyword search methods,the scheme uses vector models to semantically train the dataset,enabling it to retain semantic information and achieve context-aware encrypted retrieval,significantly improving search accuracy.Additionally,a blockchain-based updatable master-slave chain storage model is designed,where the master chain stores encrypted keyword indexes and the slave chain stores verification information generated by zero-knowledge proofs,thus balancing system load while improving search and verification efficiency.Finally,an improved non-interactive zero-knowledge proof mechanism is introduced,reducing the computational complexity of verification and ensuring efficient validation of search results.Experimental results demonstrate that the proposed scheme offers stronger security,balanced overhead,and higher search verification efficiency.
基金provided by the Science Research Project of Hebei Education Department under grant No.BJK2024115.
文摘High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet.
文摘Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods,which often demand extensive computational resources and struggle with diverse data acquisition techniques.This research presents a novel approach for vehicle classification and recognition in aerial image sequences,integrating multiple advanced techniques to enhance detection accuracy.The proposed model begins with preprocessing using Multiscale Retinex(MSR)to enhance image quality,followed by Expectation-Maximization(EM)Segmentation for precise foreground object identification.Vehicle detection is performed using the state-of-the-art YOLOv10 framework,while feature extraction incorporates Maximally Stable Extremal Regions(MSER),Dense Scale-Invariant Feature Transform(Dense SIFT),and Zernike Moments Features to capture distinct object characteristics.Feature optimization is further refined through a Hybrid Swarm-based Optimization algorithm,ensuring optimal feature selection for improved classification performance.The final classification is conducted using a Vision Transformer,leveraging its robust learning capabilities for enhanced accuracy.Experimental evaluations on benchmark datasets,including UAVDT and the Unmanned Aerial Vehicle Intruder Dataset(UAVID),demonstrate the superiority of the proposed approach,achieving an accuracy of 94.40%on UAVDT and 93.57%on UAVID.The results highlight the efficacy of the model in significantly enhancing vehicle detection and classification in aerial imagery,outperforming existing methodologies and offering a statistically validated improvement for intelligent traffic monitoring systems compared to existing approaches.
文摘This paper proposes a collaborative design model based on operation semantics in a distributed computer-aided design (CAD) environment. The goal is to reduce time consumption in data format conversion and the requirement of network bandwidth so as to improve the cooperative ability and the synchronization efficiency. Firstly, real-time collaborative design is reviewed and three kinds of real-time collaborative design models are discussed. Secondly, the concept of operation semantics is defined and the framework of an operation semantics model is presented. The operation semantics carries the original design data and actual operation process to express design intent and operation activity in conventional CAD systems. Finally, according to the operation semantics model, a CAD operation primitive is defined which can be retrieved from and mapped to the local CAD system operation commands; a distributed CAD collaborative architecture based on the model is presented, and an example is given to verify the model.
基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20050288015)Innovation Funds of Nanjing University of Science and Technology
文摘A global semantics matching and QoS-awareness service selection are proposed when aimed at a web services composition process.Both QoS-aware matching and global semantic matching are considered during the global matching.When there are demands for global semantic matching and QoS of service composition,a concrete service set which meets the demands is selected for the whole service composition process and an optimal solution is also achieved.A QoS model is built and the corresponding evaluation method is given for the matching of the service composition process.Based on them,a genetic algorithm is proposed to achieve the maximal global semantic matching degree and fulfill the QoS requirements for the whole service composition process.Experimental results and analysis show that the algorithm is feasible and effective for semantics and QoS-aware service matching.
文摘What and how we translate are questions often argued about. No matter what kind of answers one may give, priority in translation should be granted to meaning, especially those meanings that exist in all concerned languages. This research defines them as universal sememes, and the study of them as universal semantics, of which applications are also briefly looked into.
基金supported by National Basic Research Program of China (973 Program) (No. 2015CB352502)National Nature Science Foundation of China (No. 61573026)Beijing Nature Science Foundation (No. L172037)
文摘Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zeroshot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot finegrained classification.
基金the Specialized Research Program Fundthe Doctoral Program of Higher Education of China (20050007023)the Natural Science Foundation of Shandong Province(Y2004G04)
文摘In Chinese question answering system, because there is more semantic relation in questions than that in query words, the precision can be improved by expanding query while using natural language questions to retrieve documents. This paper proposes a new approach to query expansion based on semantics and statistics Firstly automatic relevance feedback method is used to generate a candidate expansion word set. Then the expanded query words are selected from the set based on the semantic similarity and seman- tic relevancy between the candidate words and the original words. Experiments show the new approach is effective for Web retrieval and out-performs the conventional expansion approaches.
基金The National Basic Research Program of China under contract No.2009CB723903the National Natural Science Foundation of China under contract Nos 40901194 and 40801162+2 种基金the Director Foundation of CEODECASunder contract No.Y2ZZ06101B
文摘Spatio-temporal semantics based on "object views" or "event views" has few abilities to represent and model the continuity and gradual oceanic phenomena or objects, which seriously limits the specific marine applications and knowledge discovery and data mining, so this paper proposes a hierarchical abstraction semantics with "marine spatio-temporal process-life span phases-evolution sequences--state units" and process objects included by level with "marine process objects--phase objects--sequence object---state objects" with the oceanic process characteristics into the marine process semantics. In addition, this paper designs the storage and representation of marine process objects using the backus normal forms (BNF) and abstract data type (ADT). Base on E1 Nifio Southern Oscilation (ENSO) index and Chinese rain gauging station data, this paper also gives a case of study. The spatio-temporal analysis between ENSO process and Chinese rainfall anomalies shows that the marine spatio-temporal semantics not only can illustrate the spatial distribution of Chinese rainfall anomalies in different time scales at ENSO process, life span phases and state units, but also analyze the dynamic changes of Chinese rainfall anomalies in different life span phases or state units within ENSO evolution.
文摘There are mainly four kinds of models to record and deal with historical information.By taking them as reference,the spatio-temporal model based on event semantics is proposed.In this model,according to the way for describing an event,all the information are divided into five domains.This paper describes the model by using the land parcel change in the cadastral information system,and expounds the model by using five tables corresponding to the five domains.With the aid of this model,seven examples are given on historical query,trace back and recurrence.This model can be implemented either in the extended relational database or in the object-oriented database.
基金supported by the National Key R&D Program of China (No.2018YFB1305200)the National Natural Science Foundation of China (Nos.61906134, 62020106004, 92048301, and 61925201)
文摘Existing multi-view three-dimensional(3 D) reconstruction methods can only capture single type of feature from input view, failing to obtain fine-grained semantics for reconstructing the complex shapes. They rarely explore the semantic association between input views, leading to a rough 3 D shape. To address these challenges, we propose a semantics-aware transformer(SATF) for 3 D reconstruction. It is composed of two parallel view transformer encoders and a point cloud transformer decoder, and takes two red, green and blue(RGB) images as input and outputs a dense point cloud with richer details. Each view transformer encoder can learn a multi-level feature, facilitating characterizing fine-grained semantics from input view. The point cloud transformer decoder explores a semantically-associated feature by aligning the semantics of two input views, which describes the semantic association between views. Furthermore, it can generate a sparse point cloud using the semantically-associated feature. At last, the decoder enriches the sparse point cloud for producing a dense point cloud with richer details. Extensive experiments on the Shape Net dataset show that our SATF outperforms the state-of-the-art methods.
文摘Due to lack of strictly defined formal semantics, an UML activity diagram is unsuitable for the tasks of formal analysis, verification and assertion on the system it describes. In this paper, Petri net is used to define the formal semantics of an UML activity diagram containing object flow states, laying a foundation for the precise description and analysis of a workflow system.
基金supported in part by the National Natural Science Foundation of China(Nos.61906135,62020106004,92048301 and 61906027)the Tianjin Science and Technology Plan Project(No.20JCQNJC01350)。
文摘Unsupervised image-to-image translation is a challenging task for computer vision. The goal of image translation is to learn a mapping between two domains, without corresponding image pairs. Many previous works only focused on image-level translation but ignored image features processing, which led to a certain semantics loss, such as the changes of the background of the generated image, partial transformation, and so on. In this work, we propose a method of image-to-image translation based on generative adversarial nets(GANs). We use autoencoder structure to extract image features in the generator and add semantic consistency loss on extracted features to maintain the semantic consistency of the generated image. Self-attention mechanism at the end of generator is used to obtain long-distance dependency in image. At the same time, as expanding the convolution receptive field, the quality of the generated image is enhanced. Quantitative experiment shows that our method significantly outperforms previous works. Especially on images with obvious foreground, our model shows an impressive improvement.
基金Supported by National Natural Science Foundation of China (Grant No.51175287)National Science and Technology Major Project of China (Grant No.2011ZX02403)
文摘CAD model retrieval based on functional semantics is more significant than content-based 3D model retrieval during the mechanical conceptual design phase. However, relevant research is still not fully discussed. Therefore, a functional semantic-based CAD model annotation and retrieval method is proposed to support mechanical conceptual design and design reuse, inspire designer creativity through existing CAD models, shorten design cycle, and reduce costs. Firstly, the CAD model functional semantic ontology is constructed to formally represent the functional semantics of CAD models and describe the mechanical conceptual design space comprehensively and consistently. Secondly, an approach to represent CAD models as attributed adjacency graphs(AAG) is proposed. In this method, the geometry and topology data are extracted from STEP models. On the basis of AAG, the functional semantics of CAD models are annotated semi-automatically by matching CAD models that contain the partial features of which functional semantics have been annotated manually, thereby constructing CAD Model Repository that supports model retrieval based on functional semantics. Thirdly, a CAD model retrieval algorithm that supports multi-function extended retrieval is proposed to explore more potential creative design knowledge in the semantic level. Finally, a prototype system, called Functional Semantic-based CAD Model Annotation and Retrieval System(FSMARS), is implemented. A case demonstrates that FSMARS can successfully botain multiple potential CAD models that conform to the desired function. The proposed research addresses actual needs and presents a new way to acquire CAD models in the mechanical conceptual design phase.
基金Basic and Advanced Research Projects of CSTC,Grant/Award Number:cstc2019jcyj-zdxmX0008Science and Technology Research Program of Chongqing Municipal Education Commission,Grant/Award Numbers:KJQN202100634,KJZDK201900605National Natural Science Foundation of China,Grant/Award Number:62006065。
文摘Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges mentioned above with a single model.To tackle this dilemma,this paper proposes spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting(STSIGMA),an efficient end-to-end method to jointly and accurately perceive the AD environment and forecast the trajectories of the surrounding traffic agents within a unified framework.ST-SIGMA adopts a trident encoder-decoder architecture to learn scene semantics and agent interaction information on bird’s-eye view(BEV)maps simultaneously.Specifically,an iterative aggregation network is first employed as the scene semantic encoder(SSE)to learn diverse scene information.To preserve dynamic interactions of traffic agents,ST-SIGMA further exploits a spatio-temporal graph network as the graph interaction encoder.Meanwhile,a simple yet efficient feature fusion method to fuse semantic and interaction features into a unified feature space as the input to a novel hierarchical aggregation decoder for downstream prediction tasks is designed.Extensive experiments on the nuScenes data set have demonstrated that the proposed ST-SIGMA achieves significant improvements compared to the state-of-theart(SOTA)methods in terms of scene perception and trajectory forecasting,respectively.Therefore,the proposed approach outperforms SOTA in terms of model generalisation and robustness and is therefore more feasible for deployment in realworld AD scenarios.
基金Supported by the Open Research Fund Program of the Geomatics and Applications Laboratory, Liaoning Technical University (No. 2005001).
文摘Starting with a simple presentation of location determination techniques, physical location and geographic location as two common kinds of location description methods are discussed. The semantic location concept is then introduced and a correction is given, which especially emphasizes that location property is an important part of semantic location. By analyzing the connotation and extension of every geographic location, what should be contained in a location property is determined. Using a hierarchical model, the relations and associations among locations are clearly described. To realize a formalized description of semantic location, an ontology technique that can adequately describe semantic information of location is used. Organized by ontology web language, a location ontology model allows semantic location to be read and processed by computer. The location ontology model realizes the knowledge description of location information and establishes an important foundation to personalized preference services in location based services.