The modulation of charge transfer pathways within type-I heterojunctions through interfacial electric field(IEF)engineering is of critical importance in promoting photocatalytic hydrogen evolution,effectively facilita...The modulation of charge transfer pathways within type-I heterojunctions through interfacial electric field(IEF)engineering is of critical importance in promoting photocatalytic hydrogen evolution,effectively facilitating the separation of photogenerated charge carriers.In this study,we performed in-situ growth of two-dimensional ZnIn_(2)S_(4)nanosheets on MnCo_(2)O_(4.5)nanorods to construct an ohmic-like type-I ZnIn_(2)S_(4)/MnCo_(2)O_(4.5)heterojunction for efficient photocatalytic hydrogen evolution.This ohmic-like charge transfer mechanism effectively addresses the intrinsic limitations inherent to conventional type-I heterojunctions neglecting IEF effects,particularly through IEF-induced enhancement of charge separation efficiency.Consequently,the optimized ZnIn_(2)S_(4)/MnCo_(2)O_(4.5)photocatalyst demonstrates an outstanding photocatalytic hydrogen evolution rate of 20.9 mmol g^(−1)h^(−1),14.9 times that of the bare ZnIn_(2)S_(4).Furthermore,the ohmic-like charge transport behavior has been rigorously validated by integrated advanced experimental characterizations,including in-situ X-ray photoelectron spectroscopy(XPS),Kelvin probe force microscopy(KPFM),and surface photovoltage(SPV)measurements,which collectively provide robust evidence for the proposed mechanism.This work offers valuable insights into the design of high-efficient ohmic-like type-I heterojunction catalysts for photocatalytic H_(2)evolution.展开更多
Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However...Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance.展开更多
Photodynamic therapy(PDT)has shown great merits in treating microbial in-fections due to its absence of bacterial resistance.However,the pronounced hypoxic microenvironment in the bacterial infections limits the thera...Photodynamic therapy(PDT)has shown great merits in treating microbial in-fections due to its absence of bacterial resistance.However,the pronounced hypoxic microenvironment in the bacterial infections limits the therapeutic effi-ciency of traditional type-II PDT,which is highly dependent on oxygen.Here type-I photosensitizer BTZ_(n)-Py(n=8,20)coordinates with chemical antibacterial agent Agþto fabricate metallo-supramolecular nanofibers.Under light irradiation,the formed nanofibers could not only generate type-Ⅱ reactive oxygen species(ROS),1O2,but also produce type-I ROS O2^(•-)which addressed the hypoxic issues within infected tissues.Moreover,the acid-and photo-active Agþrelease from the nano-fibers endowed the metallo-supramolecular nanofibers with controlled release characteristic,which showed good biocompatibility to normal tissues.Owing to controlled Agþrelease and photoinduced type-I ROS,the in vitro and in vivo ex-periments confirmed the significantly synergistic antibacterial performance of the metallo-supramolecular fibers against both Gram-positive and Gram-negative bacteria.展开更多
Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of ...Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of data. The purpose of the research was to estimate the three parameters of the Frechet distribution via the frequentist Maximum Likelihood and the Bayesian Estimators. In this paper, the maximum likelihood method (MLE) is not available of the three parameters in the closed forms;therefore, it was solved by the numerical methods. Similarly, the Bayesian estimators are implemented using Jeffreys and gamma priors with two loss functions, which are: squared error loss function and Linear Exponential Loss Function (LINEX). The parameters of the Frechet distribution via Bayesian cannot be obtained analytically and therefore Markov Chain Monte Carlo is used, where the full conditional distribution for the three parameters is obtained via Metropolis-Hastings algorithm. Comparisons of the estimators are obtained using Mean Square Errors (MSE) to determine the best estimator of the three parameters of the Frechet distribution. The results show that the Bayesian estimation under Linear Exponential Loss Function based on Type-I censored data is a better estimator for all the parameter estimates when the value of the loss parameter is positive.展开更多
We study the interaction between dark energy (DE) and dark matter in the scope of anisotropic Bianchi type-I space-time. First we derive the general form of the DE equation of state (EoS) parameter in both non-int...We study the interaction between dark energy (DE) and dark matter in the scope of anisotropic Bianchi type-I space-time. First we derive the general form of the DE equation of state (EoS) parameter in both non-interacting and interacting cases and then we examine its future by applying a hyperbolic scale factor. It is shown that in the non-interacting case, depending on the value of the anisotropy parameter K, the DE EoS parameter varies from phantom to quintessence whereas in the interacting case the EoS parameter varies in the quintessence region. However, in both cases, the DE EoS parameter ωde ultimately (i.e. at z : -1) tends to the cosmological constant (ωde = -1). Moreover, we fix the cosmological bound on the anisotropy parameter K by using recent observational data about the Hubble parameter.展开更多
In this note,new classes of generalized type-I functions are introduced for functions between Banach spaces.These generalized type-I functions are then utilized to establish sufficient optimality conditions and dualit...In this note,new classes of generalized type-I functions are introduced for functions between Banach spaces.These generalized type-I functions are then utilized to establish sufficient optimality conditions and duality results for a vector optimization problem with functions defined on a Banach space.展开更多
This paper proposes a simple constant-stress accel- erated life test (ALT) model from Burr type XII distribution when the data are Type-I progressively hybrid censored. The maximum likelihood estimation (MLE) of t...This paper proposes a simple constant-stress accel- erated life test (ALT) model from Burr type XII distribution when the data are Type-I progressively hybrid censored. The maximum likelihood estimation (MLE) of the parameters is obtained through the numerical method for solving the likelihood equations. Approxi- mate confidence interval (CI), based on normal approximation to the asymptotic distribution of MLE and percentile bootstrap Cl is derived. Finally, a numerical example is introduced and then a Monte Carlo simulation study is carried out to illustrate the pro- posed method.展开更多
In this paper, inference on parameter estimation of the generalized Rayleigh distribution are investigated for progressively type-I interval censored samples. The estimators of distribution parameters via maximum like...In this paper, inference on parameter estimation of the generalized Rayleigh distribution are investigated for progressively type-I interval censored samples. The estimators of distribution parameters via maximum likelihood, moment method and probability plot are derived, and their performance are compared based on simulation results in terms of the mean squared error and bias. A case application of plasma cell myeloma data is used for illustrating the proposed estimation methods.展开更多
We have studied Locally Rotationally Symmetric (LRS) Bianchi type-I cosmological model filled with anisotropic fluid in general theory of relativity. The solutions of the field equations are obtained by using special ...We have studied Locally Rotationally Symmetric (LRS) Bianchi type-I cosmological model filled with anisotropic fluid in general theory of relativity. The solutions of the field equations are obtained by using special form of deceleration parameter which gives early deceleration and late time accelerating cosmological model. The geometrical and physical aspect of the model is also studied.展开更多
The exact solutions of the Einstein field equations for dark energy (DE) in Locally Rotationally Symmetric (LRS) Bianchi type-I metric under the assumption on the anisotropy of the fluid are obtained for exponential v...The exact solutions of the Einstein field equations for dark energy (DE) in Locally Rotationally Symmetric (LRS) Bianchi type-I metric under the assumption on the anisotropy of the fluid are obtained for exponential volumetric expansion within the frame work of Lyra manifold for uniform and time varying displacement field. The isotropy of the fluid and space is examined.展开更多
Bianchi Type-I cosmological model in the presence of Saez-Ballester theory gravitation is studied. An exact solution of the field equation is given by considering the cosmological model yield a metric potential includ...Bianchi Type-I cosmological model in the presence of Saez-Ballester theory gravitation is studied. An exact solution of the field equation is given by considering the cosmological model yield a metric potential included with a real number. The relation between the deceleration parameter and Hubble parameter and average scale factor is used in that cosmological model. The effect of the viscosity on the entropy of the universe is utilized by energy momentum tensor with bulk viscous terms in a conservative manner. We obtained a formula for calculating the entropy of the universe in terms of viscosity and used it to compare to the study. Also, various physical and kinematical properties have been discussed.展开更多
This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected...This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected functions, and examples are given to show the existence of these functions. By utilizing the new concepts, several sufficient optimality conditions and Mond-Weir type duality results are proposed for non-differentiable multi-objective programming problem.展开更多
Pyroptosis is an inflammatory form of programmed cell death with great potential in cancer immunotherapies.Photodynamic therapy(PDT)represents a promising treatment modality to trigger pyroptosis.However,the hypoxic m...Pyroptosis is an inflammatory form of programmed cell death with great potential in cancer immunotherapies.Photodynamic therapy(PDT)represents a promising treatment modality to trigger pyroptosis.However,the hypoxic microenvironment inside the tumors often induces limited therapeutic efficacy.Herein,in this work,the first type of mitochondrial-targeting oxime-ester photogenerator(T-Oximer)was constructed to boost type-I ROS/aryl free radicals which could induce DNA damage by DNA cleaving and facilitate high-efficiency pyroptosis-mediated photoimmunotherapy.Detailed mechanism investigations revealed that T-Oximer could produce aryl free radicals via photolysis reaction and generate type-I ROS(O_(2)^(·-)and·OH)based on the type-I electron transfer process.Meanwhile,T-Oximer could accumulate in the mitochondria,boost mitochondrial radicals,and damage mitochondria in hypoxic tumor cells.Of peculiar interest,T-Oixmer could bind with DNA and cleave DNA to induce DNA damage.Combined mitochondrial damage with DNA cleavage,T-Oximer can initiate pyroptosis,activate the ICD effect,and trigger robust systemic antitumor immunity for efficient tumor regression and metastasis suppression.Our finding provides a new strategy for constructing oxygen-independent photogenerator for high-efficiency pyroptosis-mediated anti-hypoxia photoimmunotherapy.展开更多
Interfacial disorders in semiconductor quantum wells(QWs)determine material properties and device performance and have attracted great research efforts using different experimental methods.However,so far,there has bee...Interfacial disorders in semiconductor quantum wells(QWs)determine material properties and device performance and have attracted great research efforts using different experimental methods.However,so far,there has been no way to quantify the lateral length distribution of the interfacial disorders in QWs.Since photoluminescence(PL)is sensitive to exciton localization,the evolutions of PL energy and linewidth under external perpendicular magnetic fields have served as effective measurement methods for QW analysis;however,the evolution of PL intensity has not played a matching role.In this paper,we develop a theoretical model correlating the PL intensity with the interfacial disorders of type-I QWs under an external perpendicular magnetic field.We verify the model's rationality and functionality using In Ga(N)As/Ga As single QWs.In addition,we derive the Urbach energy and determine the lateral length distribution of interfacial disorders.The results show that the magnetic field-dependent PL intensity,as described by our model,serves as a valid probe for quantifying the interface flatness.The model also reveals that the mechanism of magnetic-field-induced intensity enhancement is a joint effect of interfacial disorder-induced exciton localization and the transfer of excitons from dark to bright states.These insights may benefit performance improvements of type-I QW materials and devices.展开更多
Currently three major problems seriously limit the practical application of can-cer photodynamic therapy(PDT):(i)the hypoxic tumor microenvironment(TME);(ii)low generation efficiency of toxic reactive oxygen species(R...Currently three major problems seriously limit the practical application of can-cer photodynamic therapy(PDT):(i)the hypoxic tumor microenvironment(TME);(ii)low generation efficiency of toxic reactive oxygen species(ROS)in aggre-gates and(iii)shallow tissue penetration depth of excitation light.Very limited approaches are available for addressing all the above three problems with a single design.Herein,a rational“three birds with one stone”molecular and nanoengi-neering strategy is demonstrated:a photodynamic nanoplatform U-Ir@PAA-ABS based on the covalent combination of lanthanide-doped upconversion nanoparti-cles(UCNPs)and an AIE-active dinuclear Ir(III)complex provides a low oxygen concentration-dependent type-I photochemical process upon 980 nm irradiation by Föster resonance energy transfer(FRET).U-Ir@PAA-ABS targets mitochondria and has excellent phototoxicity even in severe hypoxia environments upon 980 nm irradiation,inducing a dual-mode cell death mechanism by apoptosis and ferropto-sis.Taken together,the in vitro and in vivo results demonstrate a successful strategy for improving the efficacy of PDT against hypoxic tumors.展开更多
基金financial support from the“Lingyan”R&D Plan Project of Zhejiang Province(2025C02218)。
文摘The modulation of charge transfer pathways within type-I heterojunctions through interfacial electric field(IEF)engineering is of critical importance in promoting photocatalytic hydrogen evolution,effectively facilitating the separation of photogenerated charge carriers.In this study,we performed in-situ growth of two-dimensional ZnIn_(2)S_(4)nanosheets on MnCo_(2)O_(4.5)nanorods to construct an ohmic-like type-I ZnIn_(2)S_(4)/MnCo_(2)O_(4.5)heterojunction for efficient photocatalytic hydrogen evolution.This ohmic-like charge transfer mechanism effectively addresses the intrinsic limitations inherent to conventional type-I heterojunctions neglecting IEF effects,particularly through IEF-induced enhancement of charge separation efficiency.Consequently,the optimized ZnIn_(2)S_(4)/MnCo_(2)O_(4.5)photocatalyst demonstrates an outstanding photocatalytic hydrogen evolution rate of 20.9 mmol g^(−1)h^(−1),14.9 times that of the bare ZnIn_(2)S_(4).Furthermore,the ohmic-like charge transport behavior has been rigorously validated by integrated advanced experimental characterizations,including in-situ X-ray photoelectron spectroscopy(XPS),Kelvin probe force microscopy(KPFM),and surface photovoltage(SPV)measurements,which collectively provide robust evidence for the proposed mechanism.This work offers valuable insights into the design of high-efficient ohmic-like type-I heterojunction catalysts for photocatalytic H_(2)evolution.
基金the National Natural Science Foundation of China(Grant Nos.61991441 and 62004218)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB01000000)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2021005).
文摘Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance.
基金supported financially by the National Key Research and Development Program of China(2023YFC 3403000)the National Natural Science Foundation of China(22378231)the Guangdong Basic and Applied Basic Research Foundation(2024A1515012493).
文摘Photodynamic therapy(PDT)has shown great merits in treating microbial in-fections due to its absence of bacterial resistance.However,the pronounced hypoxic microenvironment in the bacterial infections limits the therapeutic effi-ciency of traditional type-II PDT,which is highly dependent on oxygen.Here type-I photosensitizer BTZ_(n)-Py(n=8,20)coordinates with chemical antibacterial agent Agþto fabricate metallo-supramolecular nanofibers.Under light irradiation,the formed nanofibers could not only generate type-Ⅱ reactive oxygen species(ROS),1O2,but also produce type-I ROS O2^(•-)which addressed the hypoxic issues within infected tissues.Moreover,the acid-and photo-active Agþrelease from the nano-fibers endowed the metallo-supramolecular nanofibers with controlled release characteristic,which showed good biocompatibility to normal tissues.Owing to controlled Agþrelease and photoinduced type-I ROS,the in vitro and in vivo ex-periments confirmed the significantly synergistic antibacterial performance of the metallo-supramolecular fibers against both Gram-positive and Gram-negative bacteria.
文摘Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of data. The purpose of the research was to estimate the three parameters of the Frechet distribution via the frequentist Maximum Likelihood and the Bayesian Estimators. In this paper, the maximum likelihood method (MLE) is not available of the three parameters in the closed forms;therefore, it was solved by the numerical methods. Similarly, the Bayesian estimators are implemented using Jeffreys and gamma priors with two loss functions, which are: squared error loss function and Linear Exponential Loss Function (LINEX). The parameters of the Frechet distribution via Bayesian cannot be obtained analytically and therefore Markov Chain Monte Carlo is used, where the full conditional distribution for the three parameters is obtained via Metropolis-Hastings algorithm. Comparisons of the estimators are obtained using Mean Square Errors (MSE) to determine the best estimator of the three parameters of the Frechet distribution. The results show that the Bayesian estimation under Linear Exponential Loss Function based on Type-I censored data is a better estimator for all the parameter estimates when the value of the loss parameter is positive.
基金a research fund from the Mahshahr Branch of Islamic Azad University under the project entitled "Interacting Viscous Dark Energy And Cold Dark Matter In An Anisotropic Universe"
文摘We study the interaction between dark energy (DE) and dark matter in the scope of anisotropic Bianchi type-I space-time. First we derive the general form of the DE equation of state (EoS) parameter in both non-interacting and interacting cases and then we examine its future by applying a hyperbolic scale factor. It is shown that in the non-interacting case, depending on the value of the anisotropy parameter K, the DE EoS parameter varies from phantom to quintessence whereas in the interacting case the EoS parameter varies in the quintessence region. However, in both cases, the DE EoS parameter ωde ultimately (i.e. at z : -1) tends to the cosmological constant (ωde = -1). Moreover, we fix the cosmological bound on the anisotropy parameter K by using recent observational data about the Hubble parameter.
基金Foundation item: Supported by the National Natural Science Foundation of China(60574075) University, engaged in optimization theory and application.
文摘In this note,new classes of generalized type-I functions are introduced for functions between Banach spaces.These generalized type-I functions are then utilized to establish sufficient optimality conditions and duality results for a vector optimization problem with functions defined on a Banach space.
基金supported by the National Natural Science Foundation of China(7117116470471057)
文摘This paper proposes a simple constant-stress accel- erated life test (ALT) model from Burr type XII distribution when the data are Type-I progressively hybrid censored. The maximum likelihood estimation (MLE) of the parameters is obtained through the numerical method for solving the likelihood equations. Approxi- mate confidence interval (CI), based on normal approximation to the asymptotic distribution of MLE and percentile bootstrap Cl is derived. Finally, a numerical example is introduced and then a Monte Carlo simulation study is carried out to illustrate the pro- posed method.
文摘In this paper, inference on parameter estimation of the generalized Rayleigh distribution are investigated for progressively type-I interval censored samples. The estimators of distribution parameters via maximum likelihood, moment method and probability plot are derived, and their performance are compared based on simulation results in terms of the mean squared error and bias. A case application of plasma cell myeloma data is used for illustrating the proposed estimation methods.
文摘We have studied Locally Rotationally Symmetric (LRS) Bianchi type-I cosmological model filled with anisotropic fluid in general theory of relativity. The solutions of the field equations are obtained by using special form of deceleration parameter which gives early deceleration and late time accelerating cosmological model. The geometrical and physical aspect of the model is also studied.
文摘The exact solutions of the Einstein field equations for dark energy (DE) in Locally Rotationally Symmetric (LRS) Bianchi type-I metric under the assumption on the anisotropy of the fluid are obtained for exponential volumetric expansion within the frame work of Lyra manifold for uniform and time varying displacement field. The isotropy of the fluid and space is examined.
文摘Bianchi Type-I cosmological model in the presence of Saez-Ballester theory gravitation is studied. An exact solution of the field equation is given by considering the cosmological model yield a metric potential included with a real number. The relation between the deceleration parameter and Hubble parameter and average scale factor is used in that cosmological model. The effect of the viscosity on the entropy of the universe is utilized by energy momentum tensor with bulk viscous terms in a conservative manner. We obtained a formula for calculating the entropy of the universe in terms of viscosity and used it to compare to the study. Also, various physical and kinematical properties have been discussed.
文摘This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected functions, and examples are given to show the existence of these functions. By utilizing the new concepts, several sufficient optimality conditions and Mond-Weir type duality results are proposed for non-differentiable multi-objective programming problem.
基金partially funded by the National Natural Science Foundation of China(No.22308192)the Guangdong Provincial Special Support Program for Prominent Talents(2021JC06Y656)+1 种基金the Natural Science Foundation of Guangdong Province,China(No.2023A1515012934)Guangdong Province Marine Economic Development Project(No.GDNRC[2024]27).
文摘Pyroptosis is an inflammatory form of programmed cell death with great potential in cancer immunotherapies.Photodynamic therapy(PDT)represents a promising treatment modality to trigger pyroptosis.However,the hypoxic microenvironment inside the tumors often induces limited therapeutic efficacy.Herein,in this work,the first type of mitochondrial-targeting oxime-ester photogenerator(T-Oximer)was constructed to boost type-I ROS/aryl free radicals which could induce DNA damage by DNA cleaving and facilitate high-efficiency pyroptosis-mediated photoimmunotherapy.Detailed mechanism investigations revealed that T-Oximer could produce aryl free radicals via photolysis reaction and generate type-I ROS(O_(2)^(·-)and·OH)based on the type-I electron transfer process.Meanwhile,T-Oximer could accumulate in the mitochondria,boost mitochondrial radicals,and damage mitochondria in hypoxic tumor cells.Of peculiar interest,T-Oixmer could bind with DNA and cleave DNA to induce DNA damage.Combined mitochondrial damage with DNA cleavage,T-Oximer can initiate pyroptosis,activate the ICD effect,and trigger robust systemic antitumor immunity for efficient tumor regression and metastasis suppression.Our finding provides a new strategy for constructing oxygen-independent photogenerator for high-efficiency pyroptosis-mediated anti-hypoxia photoimmunotherapy.
基金supported by the National Natural Science Foundation of China(Grant Nos.12227901,12393830,and 12274429)the STCSM(Grant No.22QA1410600)。
文摘Interfacial disorders in semiconductor quantum wells(QWs)determine material properties and device performance and have attracted great research efforts using different experimental methods.However,so far,there has been no way to quantify the lateral length distribution of the interfacial disorders in QWs.Since photoluminescence(PL)is sensitive to exciton localization,the evolutions of PL energy and linewidth under external perpendicular magnetic fields have served as effective measurement methods for QW analysis;however,the evolution of PL intensity has not played a matching role.In this paper,we develop a theoretical model correlating the PL intensity with the interfacial disorders of type-I QWs under an external perpendicular magnetic field.We verify the model's rationality and functionality using In Ga(N)As/Ga As single QWs.In addition,we derive the Urbach energy and determine the lateral length distribution of interfacial disorders.The results show that the magnetic field-dependent PL intensity,as described by our model,serves as a valid probe for quantifying the interface flatness.The model also reveals that the mechanism of magnetic-field-induced intensity enhancement is a joint effect of interfacial disorder-induced exciton localization and the transfer of excitons from dark to bright states.These insights may benefit performance improvements of type-I QW materials and devices.
基金NSFC,Grant/Award Numbers:52073045,51773195Key Scientific and Technological Project of Jilin Province,Grant/Award Number:20190701010GH+2 种基金Development and Reform Commission of Jilin Province,Grant/Award Number:2020C035-5Changchun Science and Technology Bureau,Grant/Award Number:21ZGY19EPSRC,Grant/Award Number:EP/L02621X/1。
文摘Currently three major problems seriously limit the practical application of can-cer photodynamic therapy(PDT):(i)the hypoxic tumor microenvironment(TME);(ii)low generation efficiency of toxic reactive oxygen species(ROS)in aggre-gates and(iii)shallow tissue penetration depth of excitation light.Very limited approaches are available for addressing all the above three problems with a single design.Herein,a rational“three birds with one stone”molecular and nanoengi-neering strategy is demonstrated:a photodynamic nanoplatform U-Ir@PAA-ABS based on the covalent combination of lanthanide-doped upconversion nanoparti-cles(UCNPs)and an AIE-active dinuclear Ir(III)complex provides a low oxygen concentration-dependent type-I photochemical process upon 980 nm irradiation by Föster resonance energy transfer(FRET).U-Ir@PAA-ABS targets mitochondria and has excellent phototoxicity even in severe hypoxia environments upon 980 nm irradiation,inducing a dual-mode cell death mechanism by apoptosis and ferropto-sis.Taken together,the in vitro and in vivo results demonstrate a successful strategy for improving the efficacy of PDT against hypoxic tumors.
基金国家自然科学基金联合基金项目(U21A20485)浙江省高等教育“十四五”本科教育教学改革项目(jg20220019)+3 种基金浙江省产学合作协同育人项目(202018)浙江大学2023年度本科教学创新实践项目重点项目(202309)浙江省基础公益研究计划项目(LGG22F030008)浙江大学第一批AI For Education系列实证教学研究项目(202402)。