期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Two-electron redox chemistry enables potassium-free copper hexacyanoferrate as high-capacity cathode for aqueous Mg-ion battery 被引量:1
1
作者 Ying Ling Bing He +3 位作者 Lijie Han Wenbin Gong Chaofeng Chang Qichong Zhang 《InfoMat》 SCIE CSCD 2024年第6期64-75,共12页
Prussian blue analogs(PBAs)are potential contestants for aqueous Mg-ion batteries(AMIBs)on account of their high discharge voltage and threedimensional open frameworks.However,the low capacity arising from single reac... Prussian blue analogs(PBAs)are potential contestants for aqueous Mg-ion batteries(AMIBs)on account of their high discharge voltage and threedimensional open frameworks.However,the low capacity arising from single reaction site severely restricts PBAs'practical applications in highenergy-density AMIBs.Here,an organic acid co-coordination combined with etching method is reported to fabricate defect-rich potassium-free copper hexacyanoferrate with structural water on carbon nanotube fiber(DCuHCF@CNTF).Benefiting from the high-valence-state reactive sites,arrayed structure and defect effect,the well-designed D-CuHCF@CNTF exhibits an extraordinary reversible capacity of 146.6 mAh g1 with two-electron reaction,nearly close to its theoretical capacity.It is interesting to unlock the reaction mechanism of the Fe2+/Fe3+and Cu+/Cu2+redox couples via x-ray photoelectron spectroscopy.Furthermore,density functional theory calculations reveal that Fe and Cu in potassium-free D-CuHCF participate in charge transfer during the Mg2+insertion/extraction process.As a proof-of-concept demonstration,a rocking-chair fiber-shaped AMIBs was constructed via coupling with the NaTi2(PO4)3/CNTF anode,achieving high energy density and impressive mechanical flexibility.This work provides new possibilities to develop potassium-free PBAs with dual-active sites as high-capacity cathodes for wearable AMIBs. 展开更多
关键词 aqueous Mg-ion battery energy-storage fiber high capacity Prussian blue analogs twoelectron reaction
原文传递
Arylene Diimide Derivatives as Anolyte Materials with Two-Electron Storage for Ultrastable Neutral Aqueous Organic Redox Flow Batteries 被引量:1
2
作者 Xu Liu Xuri Zhang +6 位作者 Chaoyu Bao Zengrong Wang Heng Zhang Guoping Li Ni Yan Ming-Jia Li Gang He 《CCS Chemistry》 CSCD 2023年第10期2334-2347,共14页
Two-electron neutral aqueous organic redox flow batteries(AORFBs)hold more promising applications in the power grid than one-electron batteries because of their higher capacity.However,their development is strongly li... Two-electron neutral aqueous organic redox flow batteries(AORFBs)hold more promising applications in the power grid than one-electron batteries because of their higher capacity.However,their development is strongly limited by the structural instability of the highly reduced species.By combining the extendedπ-conjugation structure of the anolytes and the enhanced aromaticity of the highly reduced species,we reported a series of highly conjugated and inexpensive arylene diimide derivatives(NDI,PDI,and TPDI)as novel two-electron storage anolyte materials for ultrastable AORFBs.Matched with(ferrocenylmethyl)trimethylammonium chloride(FcNCl)as catholyte,arylene diimide derivative-based AORFBs showed the highest stability in two-electron AORFBs to date.The NDI/FcNCl-based AORFB delivered 98.44%capacity retention at 40 mA cm^(−2)for 350 cycles;TPDI/FcNCl-based AORFB also showed remarkable stability with 97.22%capacity retention at 20 mA cm^(−2)over 200 cycles.This finding lays the theoretical foundation and offers a reference for improving the stability of two-electron AORFBs. 展开更多
关键词 energy storage organic flow battery anolyte materials arylene diimide derivatives twoelectron storage
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部