The t-wise intersection of constant-weight codes are computed.Based on the above result,the t-wise intersection of relative two-weight codes are determined by using the finite geometric structure of relative two-weigh...The t-wise intersection of constant-weight codes are computed.Based on the above result,the t-wise intersection of relative two-weight codes are determined by using the finite geometric structure of relative two-weight codes.展开更多
In this paper,the authors establish the two-weight boundedness of the local fractional maximal operators and local fractional integrals on Gaussian measure spaces associated with the local weights.More precisely,the a...In this paper,the authors establish the two-weight boundedness of the local fractional maximal operators and local fractional integrals on Gaussian measure spaces associated with the local weights.More precisely,the authors first obtain the two-weight weak-type estimate for the locala fractional maximal operators of orderαfrom L^(p)(v)to L^(q,∞)(u)with 1≤p≤q<∞under a condition of(u,v)∈∪b>a A_(p,q,a)^(b') ,and then obtain the two-weight weak-type estimate for the local fractional integrals.In addition,the authors obtain the two-weight strong-type boundedness of the local fractional maximal operators under a condition of(u,v)∈M_(p,q,a)^(6a+9√da^2) and the two-weight strong-type boundedness of the local fractional integrals.These estimates are established by the radialization method and dyadic approach.展开更多
We prove two-Ar^λ(Ω)-weighted imbedding theorems for differential forms. These results can be used to study the weighted norms of the homotopy operator T from the Banach space LV(D, ∧^l) to the Sobolev space W^...We prove two-Ar^λ(Ω)-weighted imbedding theorems for differential forms. These results can be used to study the weighted norms of the homotopy operator T from the Banach space LV(D, ∧^l) to the Sobolev space W^1,p(D, ∧^l-1), l = 0, 1,..., n, and to establish the weighted L^p-estimates for differential forms. Finally, we give some applications of the above results to quasiregular mappings.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11171366 and 61170257)
文摘The t-wise intersection of constant-weight codes are computed.Based on the above result,the t-wise intersection of relative two-weight codes are determined by using the finite geometric structure of relative two-weight codes.
基金Supported by National Natural Science Foundation of China(Grant Nos.11871452 and 12071473)Beijing Information Science and Technology University Foundation(Grant Nos.2025031)。
文摘In this paper,the authors establish the two-weight boundedness of the local fractional maximal operators and local fractional integrals on Gaussian measure spaces associated with the local weights.More precisely,the authors first obtain the two-weight weak-type estimate for the locala fractional maximal operators of orderαfrom L^(p)(v)to L^(q,∞)(u)with 1≤p≤q<∞under a condition of(u,v)∈∪b>a A_(p,q,a)^(b') ,and then obtain the two-weight weak-type estimate for the local fractional integrals.In addition,the authors obtain the two-weight strong-type boundedness of the local fractional maximal operators under a condition of(u,v)∈M_(p,q,a)^(6a+9√da^2) and the two-weight strong-type boundedness of the local fractional integrals.These estimates are established by the radialization method and dyadic approach.
基金The research supported by National Natural Science Foundation of China (A0324610)Scientific Research Foundation of Hebei Polytechnic University (200520).
文摘We prove two-Ar^λ(Ω)-weighted imbedding theorems for differential forms. These results can be used to study the weighted norms of the homotopy operator T from the Banach space LV(D, ∧^l) to the Sobolev space W^1,p(D, ∧^l-1), l = 0, 1,..., n, and to establish the weighted L^p-estimates for differential forms. Finally, we give some applications of the above results to quasiregular mappings.