期刊文献+
共找到1,142篇文章
< 1 2 58 >
每页显示 20 50 100
Integrated classification method of tight sandstone reservoir based on principal component analysise simulated annealing genetic algorithmefuzzy cluster means 被引量:3
1
作者 Bo-Han Wu Ran-Hong Xie +3 位作者 Li-Zhi Xiao Jiang-Feng Guo Guo-Wen Jin Jian-Wei Fu 《Petroleum Science》 SCIE EI CSCD 2023年第5期2747-2758,共12页
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig... In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method. 展开更多
关键词 Tight sandstone Integrated reservoir classification principal component analysis Simulated annealing genetic algorithm Fuzzy cluster means
原文传递
Polarimetric Meteorological Satellite Data Processing Software Classification Based on Principal Component Analysis and Improved K-Means Algorithm 被引量:1
2
作者 Manyun Lin Xiangang Zhao +3 位作者 Cunqun Fan Lizi Xie Lan Wei Peng Guo 《Journal of Geoscience and Environment Protection》 2017年第7期39-48,共10页
With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In th... With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In this paper, a set of software classification method based on software operating characteristics is proposed. The method uses software run-time resource consumption to describe the software running characteristics. Firstly, principal component analysis (PCA) is used to reduce the dimension of software running feature data and to interpret software characteristic information. Then the modified K-means algorithm was used to classify the meteorological data processing software. Finally, it combined with the results of principal component analysis to explain the significance of various types of integrated software operating characteristics. And it is used as the basis for optimizing the allocation of software hardware resources and improving the efficiency of software operation. 展开更多
关键词 principal component analysis Improved K-Mean algorithm METEOROLOGICAL Data Processing FEATURE analysis SIMILARITY algorithm
在线阅读 下载PDF
Improved Face Recognition Method Using Genetic Principal Component Analysis 被引量:2
3
作者 E.Gomathi K.Baskaran 《Journal of Electronic Science and Technology》 CAS 2010年第4期372-378,共7页
An improved face recognition method is proposed based on principal component analysis (PCA) compounded with genetic algorithm (GA), named as genetic based principal component analysis (GPCA). Initially the eigen... An improved face recognition method is proposed based on principal component analysis (PCA) compounded with genetic algorithm (GA), named as genetic based principal component analysis (GPCA). Initially the eigenspace is created with eigenvalues and eigenvectors. From this space, the eigenfaces are constructed, and the most relevant eigenfaees have been selected using GPCA. With these eigenfaees, the input images are classified based on Euclidian distance. The proposed method was tested on ORL (Olivetti Research Labs) face database. Experimental results on this database demonstrate that the effectiveness of the proposed method for face recognition has less misclassification in comparison with previous methods. 展开更多
关键词 EIGENFACES EIGENVECTORS face recognition genetic algorithm principal component analysis.
在线阅读 下载PDF
Aerodynamic multi-objective integrated optimization based on principal component analysis 被引量:13
4
作者 Jiangtao HUANG Zhu ZHOU +2 位作者 Zhenghong GAO Miao ZHANG Lei YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1336-1348,共13页
Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,... Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem. 展开更多
关键词 Aerodynamic optimization Dimensional reduction Improved multi-objective particle swarm optimization(MOPSO) algorithm Multi-objective principal component analysis
原文传递
Support vector classifier based on principal component analysis 被引量:1
5
作者 Zheng Chunhong Jiao Licheng Li Yongzhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期184-190,共7页
Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dim... Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dimensions of the original samples and the main features of the samples may be picked up first to improve the performance of SVC. A principal component analysis (PCA) is employed to reduce the feature dimensions of the original samples and the pre-selected main features efficiently, and an SVC is constructed in the selected feature space to improve the learning speed and identification rate of SVC. Furthermore, a heuristic genetic algorithm-based automatic model selection is proposed to determine the hyperparameters of SVC to evaluate the performance of the learning machines. Experiments performed on the Heart and Adult benchmark data sets demonstrate that the proposed PCA-based SVC not only reduces the test time drastically, but also improves the identify rates effectively. 展开更多
关键词 support vector classifier principal component analysis feature selection genetic algorithms
在线阅读 下载PDF
Generalized two-dimensional correlation near-infrared spectroscopy and principal component analysis of the structures of methanol and ethanol 被引量:6
6
作者 Liu Hao Xu JianPing +1 位作者 Qu LingBo Xiang BingRen 《Science China Chemistry》 SCIE EI CAS 2010年第5期1154-1159,共6页
Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal c... Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal component analysis) . First,the FT-NIR spectra were measured over a temperature range of 30-64(or 30-71) °C,and then the 2D correlation spectra were computed.Combining near-infrared spectroscopy,generalized 2D correlation spectroscopy,and references,we analyzed the molecular structures(especially the hydrogen bond) of methanol and ethanol,and performed the NIR band assignments. The PCA method was employed to verify the results of the 2D analysis.This study will be helpful to the understanding of these reagents. 展开更多
关键词 NIR(near-infrared) two-dimensional (2D) CORRELATION spectroscopy principal component analysis (PCA) METHANOL ETHANOL
原文传递
Prediction of coal and gas outburst hazard using kernel principal component analysis and an enhanced extreme learning machine approach
7
作者 Kailong Xue Yun Qi +2 位作者 Hongfei Duan Anye Cao Aiwen Wang 《Geohazard Mechanics》 2024年第4期279-288,共10页
In order to enhance the accuracy and efficiency of coal and gas outburst prediction,a novel approach combining Kernel Principal Component Analysis(KPCA)with an Improved Whale Optimization Algorithm(IWOA)optimized extr... In order to enhance the accuracy and efficiency of coal and gas outburst prediction,a novel approach combining Kernel Principal Component Analysis(KPCA)with an Improved Whale Optimization Algorithm(IWOA)optimized extreme learning machine(ELM)is proposed for precise forecasting of coal and gas outburst disasters in mines.Firstly,based on the influencing factors of coal and gas outburst disasters,nine coupling indexes are selected,including gas pressure,geological structure,initial velocity of gas emission,and coal structure type.The correlation between each index was analyzed using the Pearson correlation coefficient matrix in SPSS 27,followed by extraction of the principal components of the original data through Kernel Principal Component Analysis(KPCA).The Whale Optimization Algorithm(WOA)was enhanced by incorporating adaptive weight,variable helix position update,and optimal neighborhood disturbance to augment its performance.The improved Whale Optimization Algorithm(IWOA)is subsequently employed to optimize the weight Φ of the Extreme Learning Machine(ELM)input layer and the threshold g of the hidden layer,thereby enhancing its predictive accuracy and mitigating the issue of"over-fitting"associated with ELM to some extent.The principal components extracted by KPCA were utilized as input,while the outburst risk grade served as output.Subsequently,a comparative analysis was conducted between these results and those obtained from WOA-SVC,PSO-BPNN,and SSA-RF models.The IWOA-ELM model accurately predicts the risk grade of coal and gas outburst disasters,with results consistent with actual situations.Compared to other models tested,the model's performance showed an increase in Ac by 0.2,0.3,and 0.2 respectively;P increased by 0.15,0.2167,and 0.1333 respectively;R increased by 0.25,0.3,and 0.2333 respectively;F1-Score increased by 0.2031,0.2607,and 0.1864 respectively;Kappa coefficient k increased by 0.3226,0.4762 and 0.3175,respectively.The practicality and stability of the IWOAELM model were verified through its application in a coal mine in Shanxi Province where the predicted values exactly matched the actual values.This indicates that this model is more suitable for predicting coal and gas outburst disaster risks. 展开更多
关键词 Coal and gas outburst Risk prediction Kernel principal component analysis(KPCA) Improved whale optimization algorithm(IWOA) Extreme learning machine(ELM)
在线阅读 下载PDF
Kernel Factor Analysis Algorithm with Varimax
8
作者 夏国恩 金炜东 张葛祥 《Journal of Southwest Jiaotong University(English Edition)》 2006年第4期394-399,共6页
Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle com... Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle component analysis (KPCA). The results show that the best error rate in handwritten digit recognition by kernel factor analysis with vadmax (4.2%) was superior to KPCA (4.4%). The KFA with varimax could more accurately image handwritten digit recognition. 展开更多
关键词 Kernel factor analysis Kernel principal component analysis Support vector machine Varimax algorithm Handwritten digit recognition
在线阅读 下载PDF
Convergence of algorithms used for principal component analysis 被引量:1
9
作者 张俊华 陈翰馥 《Science China(Technological Sciences)》 SCIE EI CAS 1997年第6期597-604,共8页
The convergence of algorithms used for principal component analysis is analyzed. The algorithms are proved to converge to eigenvectors and eigenvalues of a matrix A which is the expectation of observed random samples.... The convergence of algorithms used for principal component analysis is analyzed. The algorithms are proved to converge to eigenvectors and eigenvalues of a matrix A which is the expectation of observed random samples. The conditions required here are considerably weaker than those used in previous work. 展开更多
关键词 principal component analysis STOCHASTIC APPROXIMATION algorithmS convergence.
原文传递
Coal and gas outburst prediction model based on principal component analysis and improved support vector machine 被引量:4
10
作者 Chaojun Fan Xinfeng Lai +1 位作者 Haiou Wen Lei Yang 《Geohazard Mechanics》 2023年第4期319-324,共6页
In order to predict the coal outburst risk quickly and accurately,a PCA-FA-SVM based coal and gas outburst risk prediction model was designed.Principal component analysis(PCA)was used to pre-process the original data ... In order to predict the coal outburst risk quickly and accurately,a PCA-FA-SVM based coal and gas outburst risk prediction model was designed.Principal component analysis(PCA)was used to pre-process the original data samples,extract the principal components of the samples,use firefly algorithm(FA)to improve the support vector machine model,and compare and analyze the prediction results of PCA-FA-SVM model with BP model,FA-SVM model,FA-BP model and SVM model.Accuracy rate,recall rate,Macro-F1 and model prediction time were used as evaluation indexes.The results show that:Principal component analysis improves the prediction efficiency and accuracy of FA-SVM model.The accuracy rate of PCA-FA-SVM model predicting coal and gas outburst risk is 0.962,recall rate is 0.955,Macro-F1 is 0.957,and model prediction time is 0.312s.Compared with other models,The comprehensive performance of PCA-FA-SVM model is better. 展开更多
关键词 Coal and gas outburst Risk prediction principal component analysis(PCA) Firefly algorithm(FA) Support vector machine(SVM)
在线阅读 下载PDF
Principal component cluster analysis of ECG time series based on Lyapunov exponent spectrum 被引量:4
11
作者 WANGNai RUANJiong 《Chinese Science Bulletin》 SCIE EI CAS 2004年第18期1980-1985,共6页
In this paper we propose an approach of prin-cipal component cluster analysis based on Lyapunov expo-nent spectrum (LES) to analyze the ECG time series. Analy-sis results of 22 sample-files of ECG from the MIT-BIH da-... In this paper we propose an approach of prin-cipal component cluster analysis based on Lyapunov expo-nent spectrum (LES) to analyze the ECG time series. Analy-sis results of 22 sample-files of ECG from the MIT-BIH da-tabase confirmed the validity of our approach. Another technique named improved teacher selecting student (TSS) algorithm is presented to analyze unknown samples by means of some known ones, which is of better accuracy. This technique combines the advantages of both statistical and nonlinear dynamical methods and is shown to be significant to the analysis of nonlinear ECG time series. 展开更多
关键词 ECG 非线性时间级数分析 李雅普诺夫指数光谱 TSS算法 主要成份聚合分析
在线阅读 下载PDF
Research on Application of Enhanced Neural Networks in Software Risk Analysis
12
作者 Zhenbang Rong Juhua Chen +1 位作者 Mei Liu Yong Hu 《南昌工程学院学报》 CAS 2006年第2期112-116,121,共6页
This paper puts forward a risk analysis model for software projects using enranced neural networks.The data for analysis are acquired through questionnaires from real software projects. To solve the multicollinearity ... This paper puts forward a risk analysis model for software projects using enranced neural networks.The data for analysis are acquired through questionnaires from real software projects. To solve the multicollinearity in software risks, the method of principal components analysis is adopted in the model to enhance network stability.To solve uncertainty of the neural networks structure and the uncertainty of the initial weights, genetic algorithms is employed.The experimental result reveals that the precision of software risk analysis can be improved by using the erhanced neural networks model. 展开更多
关键词 software risk analysis principal components analysis back propagation neural networks genetic algorithms
在线阅读 下载PDF
面向涡轮的PCA-POA-LSTM数据驱动建模及故障预警方法 被引量:1
13
作者 刘斌 白红艳 +3 位作者 何璐瑶 张晓北 田野 杨理践 《电子测量与仪器学报》 北大核心 2025年第1期145-155,共11页
针对传统LSTM数据驱动模型存在输入参数规模过大导致运算负担过大、超参数选择不当和涡轮系统故障发生频率、运维成本高的问题,提出一种基于PCA-POA-LSTM的涡轮数据驱动建模方法,并结合滑动窗口法实现了涡轮故障预警。首先,应用PCA降维... 针对传统LSTM数据驱动模型存在输入参数规模过大导致运算负担过大、超参数选择不当和涡轮系统故障发生频率、运维成本高的问题,提出一种基于PCA-POA-LSTM的涡轮数据驱动建模方法,并结合滑动窗口法实现了涡轮故障预警。首先,应用PCA降维技术,减少输入数据维度;其次,采用POA参数寻优方法选出最优超参数组合;然后,利用LSTM算法预测涡轮的输出参数;最后,在PCA-POA-LSTM涡轮数据驱动模型预测结果的基础上,结合滑动窗口法对涡轮故障进行预警,通过窗口内标准差定义报警阈值,攻克了涡轮故障预警的难题。结果表明,以PCA-POA-LSTM为基础的涡轮数据驱动建模实现了较高的精确度,平均绝对百分比误差均在0.396以下,平均绝对误差均在0.809以下,平均方根误差均在1.387以下。并且故障预警方法,至少可提前173个监测点发出故障预警信号,实现了对涡轮故障预警的目的,为未来开展涡轮健康管理提供了理论依据和技术支持。 展开更多
关键词 涡轮 鹈鹕优化算法 长短期记忆网络 主成分分析 数据驱动
原文传递
多策略改进COA算法优化LSSVM的变压器故障诊断研究 被引量:2
14
作者 李斌 白翔旭 《电工电能新技术》 北大核心 2025年第4期112-119,共8页
为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混... 为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混沌映射、透镜反向学习、Levy飞行等策略对浣熊优化算法(COA)进行优化,提高全局寻优能力;然后,应用ICOA算法进行LSSVM参数寻优,构建ICOA-LSSVM故障诊断模型;最后,将特征提取后的数据导入ICOA-LSSVM中并与其他模型对比。实验结果表明所提方法准确率为96.19%,相比其他诊断模型具有更高的故障诊断精度。 展开更多
关键词 变压器故障诊断 浣熊优化算法 核主成分分析 最小二乘支持向量机
在线阅读 下载PDF
基于专利推荐方法的产学研合作伙伴预测 被引量:1
15
作者 刘行兵 戴学微 海本禄 《科技管理研究》 2025年第11期73-81,共9页
高校与企业在知识与技术转移过程中面临的沟通障碍,已成为制约科研成果有效转化及企业创新能力提升的重要因素。为了解决这一问题,引入推荐算法,旨在提升双方的信息传递效率和合作协调性。以中国2014—2024年自然语言领域专利数据为样本... 高校与企业在知识与技术转移过程中面临的沟通障碍,已成为制约科研成果有效转化及企业创新能力提升的重要因素。为了解决这一问题,引入推荐算法,旨在提升双方的信息传递效率和合作协调性。以中国2014—2024年自然语言领域专利数据为样本,运用潜在狄利克雷分布(LDA)主题模型对专利文本进行主题建模和聚类,从创新性、相似性、组织距离和市场前景4个维度对专利文献进行全面评估。然后,利用核主成分分析算法(KPCA)对非线性专利指标进行权重分配和匹配度计算,实现基于Top-N思想预测企业的潜在合作伙伴。研究结果表明:该方法能够有效推荐与企业领域高度契合的潜在合作方和机构,促进科研成果的快速传播与应用,为产学研合作中的技术创新提供理论支持与实践路径。 展开更多
关键词 技术转移 推荐算法 核主成分分析算法
在线阅读 下载PDF
综采工作面刮板输送机煤流轮廓点云的配准方法研究
16
作者 汪卫兵 李开放 +4 位作者 赵栓峰 王渊 路正雄 李赖 郭帅 《现代电子技术》 北大核心 2025年第16期81-87,共7页
针对综采工作面刮板输送机煤流轮廓点云噪声点多、轮廓结构复杂的特性和现有的点云配准算法无法适应煤流点云的快速和高精度配准问题,来对传统迭代最近点配准算法进行了改进。引入主成分分析法对待配准点云进行轴向初始对齐,采用尺度不... 针对综采工作面刮板输送机煤流轮廓点云噪声点多、轮廓结构复杂的特性和现有的点云配准算法无法适应煤流点云的快速和高精度配准问题,来对传统迭代最近点配准算法进行了改进。引入主成分分析法对待配准点云进行轴向初始对齐,采用尺度不变特征变换算法来提取待配准点云的特征点,构建快速点特征直方图,以确保两个点云主轴不会出现反向的情况,提高了粗配准算法的效率。通过随机抽样一致性初始配准算法搜索对应点对并计算初始刚体变换矩阵,用于实现两个点云的初步配准,为后续的精配准提供良好的初始位置。在上述粗配准的基础上,利用K-D树数据结构加速对应点的查找过程,并采用点到面的最小距离方法来提高对应关系的准确性。通过随机抽样一致算法迭代剔除错误的对应点对,以增强配准的准确性。最后,根据精确的对应点对计算刚体变换矩阵,从而实现对煤流点云数据的精细配准。实验结果表明,与其他点云配准方法相比,提出的改进配准算法在刮板输送机煤流轮廓点云的匹配精度和匹配效率上得到了提高,对煤流轮廓点云的体积计算具有重大意义。 展开更多
关键词 刮板输送机 煤流轮廓点云 点云配准 主成分分析法 尺度不变特征变换 随机抽样一致算法
在线阅读 下载PDF
哈尔滨城市道路轻型汽车行驶工况构建 被引量:1
17
作者 韩锐 石朋炜 +1 位作者 丁庆国 于长海 《交通科技与经济》 2025年第1期50-58,共9页
为匹配城市轻型汽车实际行驶特征,以哈尔滨市为研究对象,挑选代表性片段构建汽车行驶工况并进行误差分析。首先,利用OBD-Ⅱ接口采集运行数据,对所采数据预处理并划分运动学片段;其次,通过主成分分析法对各片段特征数据降维处理;最后,利... 为匹配城市轻型汽车实际行驶特征,以哈尔滨市为研究对象,挑选代表性片段构建汽车行驶工况并进行误差分析。首先,利用OBD-Ⅱ接口采集运行数据,对所采数据预处理并划分运动学片段;其次,通过主成分分析法对各片段特征数据降维处理;最后,利用LOF算法剔除离群点并应用RODDPSO-K-means算法对降维数据进行聚类。结果表明,构建的行驶工况与原始数据各参数间的平均相对误差为2.79%,且速度-加速度联合概率分布差异值小于2%,而国内外标准工况与原始数据参数之间均存在显著差异,说明所构建行驶工况可以更好地反映当地轻型汽车的运行特征。研究结果可为实现哈尔滨市道路交通低碳化、评估汽车燃油消耗及排放等提供参考。 展开更多
关键词 城市交通 行驶工况 主成分分析 运动学片段 RODDPSO-K-means算法
在线阅读 下载PDF
基于改进模糊支持向量回归模型的地震人员伤亡预测研究 被引量:1
18
作者 沈健 李梦瑶 《价值工程》 2025年第7期101-104,共4页
本文构建了地震人员伤亡预测指标体系,并采用主成分分析法(PCA)对数据进行降维处理。使用模糊支持向量回归(FSVR)模型减少噪声点对预测结果的影响,并采用模糊均值聚类(FCM)算法确定隶属度函数。此外,利用粒子群算法(PSO)进行寻优得到最... 本文构建了地震人员伤亡预测指标体系,并采用主成分分析法(PCA)对数据进行降维处理。使用模糊支持向量回归(FSVR)模型减少噪声点对预测结果的影响,并采用模糊均值聚类(FCM)算法确定隶属度函数。此外,利用粒子群算法(PSO)进行寻优得到最优FSVR参数,最终建立PSO-FSVR地震伤亡预测模型。 展开更多
关键词 地震伤亡预测 模糊支持向量回归 粒子群优化算法 主成分分析
在线阅读 下载PDF
基于PCA-PSO-SVM的煤岩可钻性预测方法
19
作者 甘林堂 张幼振 +4 位作者 张磊 陈韬 张凯 姚克 宋海涛 《中国煤炭地质》 2025年第3期40-44,共5页
煤岩可钻性的预测是实现煤矿井下智能化钻探的基础。提出一种以钻进参数作为可钻性指标的分级方法,从钻进参数中选取4种影响岩石可钻性的等级因素,用主成分分析法(PCA)解释每种影响因素之间的相关性及贡献率,降低数据维度的同时提高预... 煤岩可钻性的预测是实现煤矿井下智能化钻探的基础。提出一种以钻进参数作为可钻性指标的分级方法,从钻进参数中选取4种影响岩石可钻性的等级因素,用主成分分析法(PCA)解释每种影响因素之间的相关性及贡献率,降低数据维度的同时提高预测能力。通过粒子群优化和支持向量机(PSO-SVM)算法开发,合理设置预测模型参数值。以淮南矿区现场实钻数据作为样本基础,建立煤岩可钻性预测模型。通过优化前后机器学习算法模型的预测对比结果表明,提出的预测方法对煤岩可钻性等级预测准确率达到97.5%,预测准确率相比传统方法更高。研究结果可以为煤矿井下钻进过程中的地层识别,实时优化钻机操控参数,实现自适应钻进控制提供理论依据。 展开更多
关键词 煤岩可钻性 主成分分析法 PSO-SVM算法 钻进参数 预测模型 淮南矿区
在线阅读 下载PDF
基于PCA-AVOA-LightGBM的混凝土坝应力预测模型
20
作者 常留红 朱勇 +3 位作者 曾子彬 尹光景 高宏宇 邬传峰 《河海大学学报(自然科学版)》 北大核心 2025年第5期127-135,共9页
基于主成分分析(PCA)方法、非洲秃鹫优化算法(AVOA)和轻量级梯度提升学习机(LightGBM)模型构建了PCA-AVOA-LightGBM混凝土坝应力预测模型,模型采用PCA方法挖掘降维应力预测的主要影响因子,引入AVOA优化LightGBM模型超参数。依托某混凝... 基于主成分分析(PCA)方法、非洲秃鹫优化算法(AVOA)和轻量级梯度提升学习机(LightGBM)模型构建了PCA-AVOA-LightGBM混凝土坝应力预测模型,模型采用PCA方法挖掘降维应力预测的主要影响因子,引入AVOA优化LightGBM模型超参数。依托某混凝土坝应力监测数据,将PCA方法应用于向量回归机、随机森林、极端梯度提升、LightGBM等模型中,并与PCA-AVOA-LightGBM模型进行了对比分析。结果表明,PCA方法有效降低了各模型影响因子间多重共线性,PCA-AVOA-LightGBM模型相较于其他模型在预测精度和效率中表现出更优异的性能,可在类似混凝土坝的应力监测中推广应用。 展开更多
关键词 混凝土坝 超参数 应力预测 主成分分析方法 非洲秃鹫优化算法 极端梯度提升
在线阅读 下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部