期刊文献+
共找到27,547篇文章
< 1 2 250 >
每页显示 20 50 100
A comprehensive evaluation of RNA secondary structures prediction methods
1
作者 Xinlong Chen En Lou +2 位作者 Zouchenyu Zhou Ya-Lan Tan Zhi-Jie Tan 《Chinese Physics B》 2025年第8期115-127,共13页
RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa... RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures. 展开更多
关键词 RNA secondary structure prediction computational methods comprehensive evaluation traditional methods deep-learning-based methods
原文传递
Legal Research on the Protection of the Rights and Interests of Small and Medium-sized Shareholders: Based on the Response of Two-Tier Shareholding Structure
2
作者 Yuji Lin 《Proceedings of Business and Economic Studies》 2025年第3期153-159,共7页
The two-tier shareholding structure,which originated in the United States,has become popular around the world.Unlike the traditional model of“equal shares with equal rights”,the core feature of the two-tier sharehol... The two-tier shareholding structure,which originated in the United States,has become popular around the world.Unlike the traditional model of“equal shares with equal rights”,the core feature of the two-tier shareholding structure is that the company issues two classes of shares with different voting rights.It enables the concentration and stabilization of corporate control,which has a positive effect on the long-term development of the company and resistance to hostile takeovers.Against the background of the rapid development of the capital market and the continuous innovation of corporate governance structure,the two-tier shareholding structure has begun to be adopted by many enterprises.While this structure can improve the efficiency of corporate governance and promote corporate growth,it also raises a number of challenges.In particular,for small and medium-sized shareholders,their shareholdings may face the problem of limited or no voting rights,as well as the lack of an effective internal and external monitoring mechanism for the company.These issues may lead to the impairment of the rights of small and medium-sized shareholders.Currently,challenges in practice include inadequate laws and regulations,insufficient disclosure of information,and inadequate monitoring mechanisms.Therefore,exploring the path to protect the rights and interests of small and medium-sized shareholders and analyzing their current situation has become an important area in the study of two-tier shareholding structures.This paper starts from the actual situation,analyzes the problems exposed in the operation process of two-tier shareholding structure,and then explores the practical and feasible methods to protect the rights and interests of small and medium-sized shareholders on this basis,with a view to putting forward valuable references for the development of China’s securities market. 展开更多
关键词 two-tier shareholding structure Small and medium-sized shareholders Rights and interests protection Securities law Sunset clause Information disclosure
暂未订购
Improved Inverse First-Order Reliability Method for Analyzing Long-Term Response Extremes of Floating Structures
3
作者 Junrong Wang Zhuolantai Bai +3 位作者 Botao Xie Jie Gui Haonan Gong Yantong Zhou 《哈尔滨工程大学学报(英文版)》 2025年第3期552-566,共15页
Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an... Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results. 展开更多
关键词 Long-term response analysis Floating structures Inverse first-order reliability method Convolution model Gradient-based retrieval algorithm Environmental contour method
在线阅读 下载PDF
Evaluation of NLLoc positioning method and seismogenic structure analysis of Luanzhou M_(S)4.3 earthquake
4
作者 Zhang Yang Wang Xiao-Shan +3 位作者 Chen Ting Lv Guo-Jun Yu Hai-lin Chen Jun-lin 《Applied Geophysics》 2025年第3期729-738,894,895,共12页
NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and vel... NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and velocity model.The results show that the NLLoc method exhibits high positioning accuracy and stability in terms of arrival time picking accuracy and station distribution;however,it is sensitive to the velocity model.The positioning accuracy is higher when the velocity model is smaller than the true velocity.We combined absolute and relative positioning methods.First,we use the NLLoc method for absolute positioning of seismic data and then the double difference positioning method for relative positioning to obtain a more accurate relocation result.Furthermore,we used the combined method to locate the earthquake sequence after collecting dense seismic array data on the Luanzhou M_(S)4.3 earthquake that occurred on April 16,2021,in Hebei Province.By fitting the fault plane with the relocated earthquake sequences,the results show that the strike and dip angles of the seismogenic fault of the Luanzhou M_(S)4.3 earthquake are 208.5°and 85.6°,respectively.This indicates a high-dip angle fault with North-North-East strike and North-West dip directions.Furthermore,we infer that the seismogenic fault of the Luanzhou M_(S)4.3 earthquake is the Lulong fault. 展开更多
关键词 NLLoc method Combined multiple positioning methods Luanzhou M_(S)4.3 earthquake Seismogenic structure Lulong fault
在线阅读 下载PDF
Impact of Hard Segment Structures on Fatigue Threshold of Casting Polyurethane Using Cutting Method
5
作者 Guang-Zhi Jin Le-Hang Chen +4 位作者 Yu-Zhen Gong Peng Li Run-Guo Wang Fan-Zhu Li Yong-Lai Lu 《Chinese Journal of Polymer Science》 2025年第2期303-315,共13页
The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of ... The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of CPU.This study employed an advanced Intrinsic Strength Analyzer(ISA)to evaluate the fatigue threshold of CPUs,systematically exploring the effects of three types of isocyanates(PPDI,NDI,TDI)that contribute to hard segment structures based on the cutting method.Employing multiple advanced characterization techniques(XRD,TEM,DSC,AFM),the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold(182.89 J/m^(2))due to a highest phase separation and a densely packed spherulitic structure,although the hydrogen bonding degree is the lowest(48.3%).Conversely,NDI-based polyurethane,despite having the high hydrogen bonding degree(53.6%),exhibits moderate fatigue performance(122.52 J/m^(2)),likely due to a more scattered microstructure.TDI-based polyurethane,with the highest hydrogen bonding degree(59.1%)but absence of spherulitic structure,shows the lowest fatigue threshold(46.43 J/m^(2)).Compared to common rubbers(NR,NBR,EPDM,BR),the superior fatigue performance of CPU is attributed to its well-organized microstructure,polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation. 展开更多
关键词 Casting polyurethane Fatigue threshold Cutting method Hard segment structures Materials characterization
原文传递
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations:A Review 被引量:3
6
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 structural health monitoring data information modal parameters damage identification AI method
在线阅读 下载PDF
A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:antioxidant and bile acid-binding capacity 被引量:11
7
作者 Qiaoyun Li Zuman Dou +5 位作者 Qingfei Duan Chun Chen Ruihai Liu Yueming Jiang Bao Yang Xiong Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期494-505,共12页
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic... In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods. 展开更多
关键词 Sea buckthorn Extraction method structure Rheological properties Antioxidant activity Bile acid binding capacity
在线阅读 下载PDF
Regulation of crystal and microstructures of RETaO_(4)(RE=Nd,Sm,Gd.Ho,Er)powders synthesized via co-precipitation 被引量:1
8
作者 Jiang Tian Lin Chen +10 位作者 Xunlei Chen Keren Luo Baihui Li Di Zhang Meng Wang Bing Xu Zhiyi Ren Shixiao Yan Xiaoliang Sun Chi Liu Jing Feng 《Journal of Rare Earths》 2025年第6期1246-1255,I0006,共11页
Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research... Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research used chemical co-precipitation within an automated experimental device to synthesize RETaO_(4)(RE=Nd,Sm,Gd,Ho,Er)powders.The device automatically monitored and controlled the solutions'pH,improving the chemical co-precipitation efficiency.The crystal structure and microstructure of the RETaO_(4)powders can be controlled by changing the annealing temperature,and the materials undergo an m'-m phase transition.The m'-RETaO_(4)powders exhibit nano-size grains,while m-RETaO_(4)powders evince micron-size grains,altered by the annealing temperatures.A simultaneous thermal analysis es-timates the reversive ferroelastic tetragonal-monoclinic phase transition temperatures.Overall,this research focuses on the synthesis,crystal structures,microstructures,and phase transition of the fabricated RETaO_(4)powders. 展开更多
关键词 Rare earth tantalates Chemical co-precipitation method Rare earths Crystal structures MICROstructureS Annealingtemperatures
原文传递
Electrical structure identification of deep shale gas reservoir in complex structural area using wide field electromagnetic method 被引量:1
9
作者 Gu Zhi-Wen Li Yue-Gang +6 位作者 Yu Chang-Heng Zou Zhong-Ping Hu Ai-Guo Yin Xue-Bo Wang Qinag Ye Heng Tan Zhang-Kun 《Applied Geophysics》 SCIE CSCD 2024年第3期564-578,619,620,共17页
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con... To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored. 展开更多
关键词 complex tectonic area in southern Sichuan wide field electromagnetic method deep exploration shale gas reservoir electrical structure
在线阅读 下载PDF
Perovskite oxide exsolution process and structure regulation strategy:a review
10
作者 Danyang Liu Dan Lin +8 位作者 Wenwen Yu Juntao Liu Hexuan Zhou Ziyu Zhou Meixia Lan Zhimeng Li Jingang Qi Lidan Tang Bing Wang 《Frontiers of Materials Science》 2025年第3期53-72,共20页
Traditional surface modification methods such as physical or chemical vapor deposition and impregnation have been widely used to modify perovskite surfaces.However,there is weak interaction between metal nanoparticles... Traditional surface modification methods such as physical or chemical vapor deposition and impregnation have been widely used to modify perovskite surfaces.However,there is weak interaction between metal nanoparticles(NPs)loaded via these methods and the perovskite oxide support,which may lead to issues such as deactivation during application owing to poor stability,easy agglomeration,and carbon deposition.Exsolution refers to the in-situ growth of NPs on the surface of parent oxides.The presence of NPs increases the number of active sites for the reaction,and NPs exhibit strong interaction with the matrix,showing excellent catalytic performance and high stability.Therefore,in recent years,the field of in-situ exsolution has received extensive attention.Based on this,this paper starts from exsolution phenomena of perovskite oxides,reviews existing exsolution methods,sorts out structurally regulated exsolution strategies of perovskite oxides in terms of A-site defects,B-site cation dopants,and phase transformation,introduces application fields of the in-situ exsolution,and provides prospect. 展开更多
关键词 EXSOLUTION perovskite oxide NANOPARTICLE exsolution method structure regulation
原文传递
Projecting the pan-Arctic three-dimensional ocean thermohaline structure using satellite sea surface data and a variational approach
11
作者 Zikang He Xidong Wang +4 位作者 Yuan Cao Jinlong Li Yixuan Li Xuezhu Wang Jian Chen 《Acta Oceanologica Sinica》 2025年第5期1-15,共15页
Satellite altimetry missions at high latitude have opened new avenues for understanding the changes occurring over the ice-covered region.By incorporating Arctic satellite remote sensing data-including sea surface tem... Satellite altimetry missions at high latitude have opened new avenues for understanding the changes occurring over the ice-covered region.By incorporating Arctic satellite remote sensing data-including sea surface temperature(SST),sea surface height anomaly(SSHA),and sea surface salinity(SSS).This study employs a variational method to reconstruct the three-dimensional thermohaline structure of the Arctic Ocean.Compared to the Regional Arctic Reanalysis(RARE),the reconstruction well captures both the horizontal and vertical temperature and salinity structures in the Arctic.It demonstrates superior skill over RARE,when compared with Argo profiles and Ice-Tethered Profiler(ITP)observations.The reconstruction is particularly effective in ice-covered regions,where it more accurately captures the transition from Pacific water to Atlantic water compared to RARE.These findings underscore the potential of applying Arctic satellite data to reconstruct vertical thermohaline structures in the Arctic,particularly in areas due to lack of the subsurface observation reanalysis data exhibit significant biases.As Arctic satellite observations continue to advance,the applications of this method are becoming increasingly promising,which is useful for monitoring the ice-covered region environment and can be applied to oceanographic research. 展开更多
关键词 thermohaline structure ARCTIC variational method Arctic satellite observation RECONSTRUCTION
在线阅读 下载PDF
Optimization-Based Approaches to Uncertainty Analysis of Structures Using Non-Probabilistic Modeling:A Review
12
作者 Yoshihiro Kanno Izuru Takewaki 《Computer Modeling in Engineering & Sciences》 2025年第4期115-152,共38页
Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization.This paper provides a review on optimization-based methods for uncertainty analysis,with focusing... Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization.This paper provides a review on optimization-based methods for uncertainty analysis,with focusing attention on specific properties of adopted numerical optimization approaches.We collect and discuss the methods based on nonlinear programming,semidefinite programming,mixed-integer programming,mathematical programming with complementarity constraints,difference-of-convex programming,optimization methods using surrogate models and machine learning techniques,and metaheuristics.As a closely related topic,we also overview the methods for assessing structural robustness using non-probabilistic uncertainty modeling.We conclude the paper by drawing several remarks through this review. 展开更多
关键词 UNCERTAINTY non-probabilisticmodeling optimization methods bound for structural response ROBUSTNESS
在线阅读 下载PDF
Data-Driven Parametric Design of Additively Manufactured Hybrid Lattice Structure for Stiffness and Wide-Band Damping Performance
13
作者 Chenyang Li Shangqin Yuan +3 位作者 Han Zhang Shaoying Li Xinyue Li Jihong Zhu 《Additive Manufacturing Frontiers》 2025年第2期30-39,共10页
The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies m... The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies make it possible to fabricate these highly spatially programmable structures and greatly enhance the freedom in their design.However,traditional analytical methods do not sufficiently reflect the actual vibration-damping mechanism of lattice structures and are limited by their high computational cost.In this study,a hybrid lattice structure consisting of various cells was designed based on quasi-static and vibration experiments.Subsequently,a novel parametric design method based on a data-driven approach was developed for hybrid lattices with engineered properties.The response surface method was adopted to define the sensitive optimization target.A prediction model for the lattice geometric parameters and vibration properties was established using a backpropagation neural network.Then,it was integrated into the genetic algorithm to create the optimal hybrid lattice with varying geometric features and the required wide-band vibration-damping characteristics.Validation experiments were conducted,demonstrating that the optimized hybrid lattice can achieve the target properties.In addition,the data-driven parametric design method can reduce computation time and be widely applied to complex structural designs when analytical and empirical solutions are unavailable. 展开更多
关键词 Hybrid lattice structure DATA-DRIVEN Wide-band damping Machine-learning method
在线阅读 下载PDF
Reconstruction of a granite structure composed of multiple irregular minerals
14
作者 Xige Liu Ruhong Fan +4 位作者 Wancheng Zhu Chengguo Zhang Joung Oh Guangyao Si Qinglei Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5580-5600,共21页
Accurately reconstructing rock structures using numerical methods is vital in rock mechanics research community,especially when obtaining rock samples is difficult and expensive.The reconstructed models must reflect t... Accurately reconstructing rock structures using numerical methods is vital in rock mechanics research community,especially when obtaining rock samples is difficult and expensive.The reconstructed models must reflect the comprehensive characteristics of natural rock,including mineral content and spatial distributions.This study employs the bubbling method to reconstruct granite containing multiple minerals in both two-(2D)and three-dimensions(3D),proposing a general procedure for granite structure reconstruction.The bubbling method utilizes numerous bubbles(hemispheres or spheres)of varying sizes and gradually changing properties,which are randomly overlapped to create a heterogeneous plane(2D)or space(3D).The properties of these overlapped areas are adjusted based on the sum of neighboring bubbles'properties,allowing specific regions with extreme properties to be selected and intercepted to form the desired mineral shapes.The results demonstrate that the reproduced granite samples can accurately exhibit the mineral distributions and sizes of real granite,quantified by fractal dimension(D)and the hourglass parameter(V_(Sum)=V_(Total)).The proposed method is also suitable for reconstructing anisotropic granite models,with anisotropy described by a fitted elliptic curve derived from ratios between directional mineral sizes and cross-sectional dimensions.Based on these findings,a series of numerical granite models with similar structures were reconstructed and tested.Results indicate that different mineral distributions significantly impact the macroscopic mechanical behaviors,but variability in numerical simulation results decreases with increasing specimen size.The compressive and tensile strength values of the reconstructed numerical models show less variation than those of natural granite specimens.This suggests that,beyond mineral distribution,other factors such as internal defects within natural granite contribute to the observed discrepancies.Additionally,the bubbling method shows great potential for modeling porous structures and offers high computational efficiency. 展开更多
关键词 RECONSTRUCTION GRANITE The bubbling method Fractal dimension ANISOTROPY Porous structure Numerical simulation
在线阅读 下载PDF
Fast Parallel Magnetic Resonance Imaging Reconstruction Based on Sparsifying Transform Learning and Structured Low-Rank Model
15
作者 DUAN Jizhong XU Yuhan HUANG Huan 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期499-509,共11页
The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the ... The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the joint sparsity and sparsifying transform learning(JTL)into the simultaneous auto-calibrating and k-space estimation(SAKE)structured low-rank model,named JTLSAKE.The alternate direction method of multipliers is exploited to solve the resulting optimization problem,and the optimized gradient method is used to improve the convergence speed.In addition,a graphics processing unit is used to accelerate the proposed algorithm.The experimental results on four in vivo human datasets demonstrate that the reconstruction quality of the proposed algorithm is comparable to that of JTL-based low-rank modeling of local k-space neighborhoods with parallel imaging(JTL-PLORAKS),and the proposed algorithm is 46 times faster than the JTL-PLORAKS,requiring only 4 s to reconstruct a 200×200 pixels MR image with 8 channels. 展开更多
关键词 structured low-rank parallel magnetic resonance imaging sparsifying transform learning alternating direction method of multipliers optimized gradient method
原文传递
Biomimetic Structure and Phase Change Materials for Multifunctional Personal Thermal Management
16
作者 Qing Su Guojun Sheng +5 位作者 Yan Li Xiaoping Lu Chao Wang Chenxing Xin Huasheng Wang Hongyong Jiang 《Journal of Bionic Engineering》 2025年第2期513-561,共49页
With the continuously increasing awareness of energy conservation and the intensifying impacts of global warming, Personal Thermal Management (PTM) technologies are increasingly recognized for their potential to ensur... With the continuously increasing awareness of energy conservation and the intensifying impacts of global warming, Personal Thermal Management (PTM) technologies are increasingly recognized for their potential to ensure human thermal comfort in extreme environments. Biomimetic structures have emerged as a novel source of inspiration for PTM applications. This review systematically summarizes the biomimetic structures, phase change materials, manufacturing methods, and the performance of multifunctional PTM wearables. Firstly, it analyzes the biomimetic structures with thermal regulation and encapsulated phase change material functionalities from different dimensions, highlighting their applications in PTM. Subsequently, it outlines the conventional manufacturing methods incorporating various biomimetic structures, offering strategies for the production of PTM wearables. The review also discusses the typical performance characteristics of multifunctional PTM wearables, addressing the current demands in thermal management. Finally, opportunities and challenges in PTM field are proposed, proposing new directions for future research. 展开更多
关键词 Personal thermal management Biomimetic structure Phase change material Manufacturing methods Multifunctionality
在线阅读 下载PDF
Data-driven predictive model of coal permeability based on microscopic fracture structure characterization
17
作者 Tianhao Yan Xiaomeng Xu +4 位作者 Jiafeng Liu Yihuai Zhang Muhammad Arif Xiaowei Xu Qiang Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4476-4489,共14页
Accurate prediction of coal reservoir permeability is crucial for engineering applications,including coal mining,coalbed methane(CBM)extraction,and carbon storage in deep unmineable coal seams.Owing to the inherent he... Accurate prediction of coal reservoir permeability is crucial for engineering applications,including coal mining,coalbed methane(CBM)extraction,and carbon storage in deep unmineable coal seams.Owing to the inherent heterogeneity and complex internal structure of coal,a well-established method for predicting permeability based on microscopic fracture structures remains elusive.This paper presents a novel integrated approach that leverages the intrinsic relationship between microscopic fracture structure and permeability to construct a predictive model for coal permeability.The proposed framework encompasses data generation through the integration of three-dimensional(3D)digital core analysis and numerical simulations,followed by data-driven modeling via machine learning(ML)techniques.Key data-driven strategies,including feature selection and hyperparameter tuning,are employed to improve model performance.We propose and evaluate twelve data-driven models,including multilayer perceptron(MLP),random forest(RF),and hybrid methods.The results demonstrate that the ML model based on the RF algorithm achieves the highest accuracy and best generalization capability in predicting permeability.This method enables rapid estimation of coal permeability by inputting two-dimensional(2D)computed tomography images or parameters of the microscopic fracture structure,thereby providing an accurate and efficient means of permeability prediction. 展开更多
关键词 Microscopic fracture structure Lattice Boltzmann method Machine learning Coal permeability Predictive model
在线阅读 下载PDF
Investigation on dynamic response of liquid-filled cylindrical shellstructures under the action of combined blast and fragments loading
18
作者 Zhujie Zhao Hailiang Hou +4 位作者 Dian Li Xiaowei Wu Yongqing Li Zhenghan Chen Linzhi Wu 《Defence Technology(防务技术)》 2025年第7期334-354,共21页
This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabri... This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation. 展开更多
关键词 Blast wave Combined blast and fragments loading Filling method Liquid-filled structure Dynamic response
在线阅读 下载PDF
Mechanical response identification of local interconnections in board- level packaging structures under projectile penetration using Bayesian regularization
19
作者 Xu Long Yuntao Hu Irfan Ali 《Defence Technology(防务技术)》 2025年第7期79-95,共17页
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to... Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions. 展开更多
关键词 Board-level packaging structure High strain-rate constitutive model Load identification Bayesian regularization Wavelet thresholding method
在线阅读 下载PDF
Influence of a cylindrical PN junction on the propagation characteristics of shear cylindrical waves in a layered piezoelectric semiconductor concentric cylinder structure
20
作者 Ruiyang LIU Xiao GUO +2 位作者 Chunyu XU Zibo WEI Chenxi DING 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1551-1570,I0024-I0026,共23页
This paper theoretically investigates the influence of a cylindrical PN junction on the propagation characteristics of shear cylindrical waves(SCWs)in an infinitely long piezoelectric semiconductor(PS)concentric cylin... This paper theoretically investigates the influence of a cylindrical PN junction on the propagation characteristics of shear cylindrical waves(SCWs)in an infinitely long piezoelectric semiconductor(PS)concentric cylinder structure.This PS concentric cylinder structure is composed of three regions:an inner PS cylinder,an outer PS cylindrical shell,and a cylindrical PN junction at the interface between the two aforementioned regions.First,the basic equations of the PS concentric cylinder structure are derived,taking into account the coupling of the mechanical displacement,electric potential,and charge carrier perturbation in the cylindrical coordinate system.Next,a mathematical model for the SCWs in this PS concentric cylinder structure is established,utilizing the spectral method and considering the physical characteristics of the cylindrical PN junction.Finally,the dispersion and attenuation curves of the SCWs are numerically calculated to discuss the influence of the interface effect resulting from the cylindrical PN junction.It is found that the existence of a cylindrical PN junction can either reduce or enhance the mechanical-to-electrical energy conversion,which is closely related to the doping mode,doping concentration,and curvature radius of the cylindrical interface.A reasonable design of the aforementioned parameters can optimize the wave motion in acoustic equipment formed by PS media with different frequencies or wavelengths.The construction and resolution of the mathematical model as well as the analysis of physical mechanisms can offer theoretical guidance for improving the efficiency of energy conversion from mechanical energy to electrical energy and optimizing the acoustic performance of energy harvesting devices. 展开更多
关键词 piezoelectric semiconductor(PS) cylindrical PN junction layered cylinder structure dispersion relation spectral method
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部