期刊文献+
共找到129,903篇文章
< 1 2 250 >
每页显示 20 50 100
Cylindrical and spherical Gardner solitons and double layers in a dusty electronegative non-thermal plasma with two-temperature electrons 被引量:1
1
作者 T. Akhter M. M. Hossain A. A. Mamun 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期339-345,共7页
A precise theoretical investigation has been made on the cylindrical and spherical (nonplanar) Gardner solitons (GSs) and double layers (DLs) in a dusty electronegative plasma (composed of inertial positive and... A precise theoretical investigation has been made on the cylindrical and spherical (nonplanar) Gardner solitons (GSs) and double layers (DLs) in a dusty electronegative plasma (composed of inertial positive and negative ions, Maxwellian cold electrons, non-thermal hot electrons, and negatively charged static dust). The reductive perturbation method has been used in derivation of the modified Gardner (MG) equation describing the nonlinear propagation of the dust ion-acoustic (DIA) waves. The MG equation admits solitary waves (SWs) and DLs solutions for σ around its critical value σ c (where σc is the value of σ corresponding to the vanishing of the nonlinear coefficient of the Korteweg de-Vries (K-dV) equation). The nonplanar SWs and DLs solutions are numerically analyzed and the parametric regimes for the existence of the positive as well as negative SWs and negative DLs are obtained. The basic features of nonplanar DIA SWs and DLs, which are found to be different from planar ones, are also identified. The implications of our results to different space and laboratory dusty plasma situations, are discussed. 展开更多
关键词 electronegative plasma two-temperature electrons Garner solitons double layers
原文传递
A round-trip journey of electrons:Electron catalyzed direct fixation of N_(2)to azos 被引量:2
2
作者 Baijing Wu Jinrui Li +5 位作者 Xiaoxue Luo Jingtian Ni Yiting Lu Minhua Shao Cunpu Li Zidong Wei 《Chinese Journal of Catalysis》 2025年第1期386-393,共8页
The triple bond in N_(2)has an extremely high bond energy and is thus difficult to break.N_(2)is commonly converted into NH3 artificially via the Haber-Bosch process,and NH_(3)can be utilized to produce other nitrogen... The triple bond in N_(2)has an extremely high bond energy and is thus difficult to break.N_(2)is commonly converted into NH3 artificially via the Haber-Bosch process,and NH_(3)can be utilized to produce other nitrogen-containing chemicals.Here,we developed an electron catalyzed method to directly fix N_(2)into azos,by pushing and pulling the electron into and from the aromatic halide with the cyclic voltammetry method.The round-trip journey of electron can successfully weaken the triple bond in N_(2)through the electron pushing-induced aryl radical via a“brick trowel”transition state,and then produce the diazonium ions by pulling the electron out from the diazo radical intermediate.Different azos can be synthesized with this developed electron catalyzed approach.This approach provides a novel concept and practical route for the fixation of N_(2)at atmospheric pressure into chemical products valuable for industrial and commercial applications. 展开更多
关键词 Fixed N_(2) AZO electron catalyzed strategy "Brick trowel"transition state Arylradicals
在线阅读 下载PDF
Optical Defects and Their Distribution in CVD Synthetic Diamond Irradiated by 2 Me VElectrons Along <100> Axis
3
作者 Fanglin Lyu Tian Shao +2 位作者 Taiqiao Liu Xiaojing Lai Andy Hsitien Shen 《宝石和宝石学杂志(中英文)》 2025年第4期34-41,共8页
The features of optical defects in a chemical vapor deposition (CVD) synthetic type Ⅱ a diamond were characterized using photoluminescence (PL) spectroscopy, before and after electron irradiation. The sample was cut ... The features of optical defects in a chemical vapor deposition (CVD) synthetic type Ⅱ a diamond were characterized using photoluminescence (PL) spectroscopy, before and after electron irradiation. The sample was cut within a {100} growth layer, and irradiated with 2 MeV electrons along the <100> axis. PL spectra of sample were collected under 532 nm and 355 nm laser excitation, at room temperature and 77 K, and linear scanning analysis along incident depth was applied to determine the distribution of defects. The pre-irradiation characterization results revealed uniformly distributed PL centers at 389 nm, 469 nm, 533 nm, 575 nm (ZPL of NV 0), 637 nm (ZPL of NV -), and 736.7/737.1 nm (ZPL doublet of SiV -). After irradiation, the differential responses of these as-grown defects were observed, alongside the emergence of irradiation-induced defects, namely 489 nm center, H3 center (ZPL at 504 nm) and GR1 center (ZPL at 741 nm). The maximum penetration depth of 2 MeV electron-irradiation induced defects was determined to be 2.1 mm. This work primarily presents the depth profiles of both as-grown and irradiation-induced defects in 2 MeV electrons irradiated diamond. The result provides experimental data for better understanding of the radiation effect in diamonds. Serving as a reference for diamond enhancement by electron irradiation. 展开更多
关键词 DIAMOND optical defects depth distribution electron irradiation PHOTOLUMINESCENCE
在线阅读 下载PDF
Dimensionality-Dependent Hot Electrons Diffusion in Gold Nanoplates Visualized by Transient Absorption Microscopy
4
作者 Danli Shi Jingyi Yang +4 位作者 Minjie Li Jianchang Lv Xi Liu Ao Liu Yan Wan 《Chinese Journal of Chemical Physics》 2025年第5期641-648,I0095-I0098,I0148,I0149,共14页
The gold nano-plates(Au NPLs)have been extensively studied for their high quality factor as mechanical resonators.But it remains still unclear how the thickness and morphology of Au NPLs affect the hot electron diffus... The gold nano-plates(Au NPLs)have been extensively studied for their high quality factor as mechanical resonators.But it remains still unclear how the thickness and morphology of Au NPLs affect the hot electron diffusion.Here we have employed transient absorption microscopy to gain spatiotemporal imaging of the hot electron diffusion in Au NPLs.Au NPLs of varying thickness over 200 nm were synthesized.It was found that the hot electron diffusion of Au NPL excited at the boundary is obviously faster than that excited at the internal surface.And thinner Au NPLs exhibit a faster hot electron diffusion rate compared to thicker Au NPLs.Because the time constant of hot electron cooling(electron-phonon coupling)is independent of the excited position and thickness of Au NPLs,the effect of electron-phonon coupling on hot electron diffusion should be ruled out.So the hot electron diffusion rate is highly dimensionality-dependent.The quasi-one-dimensional diffusion along the boundary of nanoplate has the fastest rate of 50 cm^(2)/s,and the three-dimensional diffusion has the slowest rate of 22 cm^(2)/s.The fundamental investigation on the hot electrons transport property of Au NPLs offers a new insight for designing metal-based optoelectronic devices. 展开更多
关键词 Metal nanomaterials Hot electron transport Transient absorption
在线阅读 下载PDF
Ion-acoustic shock and solitary waves in magnetized plasma with Cairns-Gurevich distribution electrons
5
作者 Rui Huo Jiulin Du 《Communications in Theoretical Physics》 2025年第6期181-188,共8页
The propagation properties of ion-acoustic solitary and shock waves in the magnetized viscous plasma with nonthermal trapped electrons are investigated.The Cairns-Gurevich distribution as the electron distribution is ... The propagation properties of ion-acoustic solitary and shock waves in the magnetized viscous plasma with nonthermal trapped electrons are investigated.The Cairns-Gurevich distribution as the electron distribution is considered to describe the plasma nonthermality and particle trapping.By adopting the reductive perturbation technique,we derived the nonlinear Schamel-Korteweg-de Vries-Burgers(SKdVB)equation,and then obtained the ion-acoustic shock and solitary wave solutions of the SKdVB equation for different limiting cases.It is found that the impact of nonthermal parameterα,external magnetic fieldΩ,obliqueness lz,wave speed U0,and the ion kinematic viscosityη0can significantly change the characteristics of the shock and solitary waves.These results may be useful for better understanding the propagation of nonlinear structures in space(i.e.Earth's magnetosphere and ionosphere,auroral regions)and laboratory plasma with nonthermal trapped electrons. 展开更多
关键词 ion-acoustic waves nonthermal plasma trapped electrons oblique propagation SKdVB equation
原文传递
Atomically dispersed tungsten enhances CO tolerance in electrocatalytic hydrogen oxidation by regulating the 5d-orbital electrons of platinum
6
作者 Xu Zhang Peng Yu +4 位作者 Di Shen Bin Cai Tianyu Han Ying Xie Lei Wang 《Advanced Powder Materials》 2025年第3期67-77,共11页
The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Eff... The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Effectively regulating the electronic structure of Pt to enhance CO resistance is crucial for developing high-performance catalysts with robust anti-poisoning capabilities.Herein,the Pt/W@NCNF featured by Pt nanoparticles and atomical dispersed tungsten(W)sites on N-doped carbon nanofibers is developed for CO tolerance HOR catalyst.The presence of W enables the electron transfer from Pt,which promotes electron rearrangement in the Pt-5d orbitals.It not only optimizes the adsorption of H^(*) and CO^(*)on Pt,but also the OH^(*) intermediates adsorbed on the W sites oxidize the CO*adsorbed on Pt,thereby retaining more active sites for H_(2) adsorption and oxidation.The HOR exchange current density of Pt/W@NCNF reaches 1.35 times that of commercial Pt/C,and the limiting current density decreases by only 3.4%after introducing 1000 ppm CO in H_(2).Notably,the Pt/W@NCNF-based PEMFCs deliver markedly superior performance across a range of CO concentrations.The present study demonstrates that electronic modulation of Pt is an effective strategy for simultaneously achieving resistance to CO and promoted HOR activity. 展开更多
关键词 Modulation electron structure Atomical dispersed W sites Pt 5d-orbital Hydrogen oxidation reaction Anti-CO poisoning
在线阅读 下载PDF
Leading role of satellite interstitial electrons in superconductivity in ternary superlithide Li14CP
7
作者 Yan Liu Tian Cui Da Li 《Matter and Radiation at Extremes》 2025年第2期90-98,共9页
The discovery of pressure-induced superconducting electrides has sparked a intense wave of interest in novel superconductors.However,opinions vary regarding the relationship between non-nuclear attractors(NNAs)and sup... The discovery of pressure-induced superconducting electrides has sparked a intense wave of interest in novel superconductors.However,opinions vary regarding the relationship between non-nuclear attractors(NNAs)and superconductivity,with two opposing views currently represented by the materials Li_(6)P and Li_(6)C.Here,we choose the ternary Li–C–P as a model system and reveal the underlying mechanism by which NNAs contribute to superconductivity.The loosely bound NNAs in the superlithide Li_(14)CP covalently bond with Li and form unique satellite interstitial electrons(SIEs)around Li near the Fermi level,dominating the superconductivity.First-principles calculations show that the SIEs progressively increase in number and couple strongly with phonons at high pressure.Moreover,the Fermi surface nesting associated with SIEs induces phonon softening,further enhancing the electron–phonon coupling and giving the superlithide Li_(14)CP a T_(c)of 10.6 K at 300 GPa.The leading role of SIEs in superconductivity is a general one and is also relevant to the recently predicted Li_(6)P and Li_(6)C.Our work presented here reshapes the understanding of NNA-dominated superconductivity and holds promise for guiding future discoveries and designs of novel high-temperature superconductors. 展开更多
关键词 ternary superlithide Li CP model system satellite interstitial electrons non nuclear attractors Fermi surface nesting high pressure superconductivity ternary li c p SUPERCONDUCTIVITY
在线阅读 下载PDF
Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides 被引量:2
8
作者 Lihua Gao Yinglei Han +5 位作者 Chensheng Lin Huikang Jiang Guang Peng Guangsai Yang Jindong Chen Ning Ye 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第12期557-560,共4页
The design of pnictide nonlinear optical crystals is quite different from chalcogenide and oxide those in which a new paradigm need be developed to regulate the band gap,one of key optical parameters In this work,two ... The design of pnictide nonlinear optical crystals is quite different from chalcogenide and oxide those in which a new paradigm need be developed to regulate the band gap,one of key optical parameters In this work,two non-centrosymmetric halidepnictides,[Cd_(2)P]_(2)[CdBr_(4)](CPB)and[Cd_(2)As]_(2)[CdBr_(4)](CAB) were reported.The complete octet binding electrons of pnictogens were constructed by four Cd-P pola covalent bonds under the anchoring effect of halogens,creating an extremely flat valence band maximum with band dispersion of only 0.17 eV.As expected,the balance of the covalency and ionicity in CPB and CAB was successfully realized,leading to a wide band gap of 2.58 eV and 1.88 eV.Remarkably,CPB no only has a widest band gap among Cd-containing pnictides,but also exhibits a SHG effect of 1.2×AgGaS_(2).moderate birefringence(0.088@visible light and calcd.0.043@2050 nm)and a wide IR transmission range.This is the first time that the octet binding electrons construction strategy was utilized to design non diamond like NLO pnictides with excellent performances. 展开更多
关键词 Nonlinear optical crystal Halidepnictide Wide band gap Structure design electronic structure
原文传递
Electrically-driven ultrafast out-of-equilibrium light emission from hot electrons in suspended graphene/hBN heterostructures 被引量:1
9
作者 Qiang Liu Wei Xu +7 位作者 Xiaoxi Li Tongyao Zhang Chengbing Qin Fang Luo Zhihong Zhu Shiqiao Qin Mengjian Zhu Kostya S Novoselov 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期328-338,共11页
Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of g... Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators. 展开更多
关键词 suspended graphene ultrafast light emitter van der Waals heterostructures thermal radiation electron–phonon interaction
在线阅读 下载PDF
Two-temperature modeling of lamellar cathode arc
10
作者 李渊博 刘兴 叶韬 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期120-139,共20页
A three-dimensional, two-temperature(2T) model of a lamellar cathode arc is constructed,drawing upon the conservation equations for mass, momentum, electron energy, and heavy particle energy, in addition to Maxwell... A three-dimensional, two-temperature(2T) model of a lamellar cathode arc is constructed,drawing upon the conservation equations for mass, momentum, electron energy, and heavy particle energy, in addition to Maxwell's equations. The model aims to elucidate how the physical properties of electrons and heavy particles affect heat transfer and fluid flow in a lamellar cathode arc. This is achieved by solving and comparing the fields of electron temperature,heavy particle temperature, fluid flow, current density, and Lorentz force distribution under varying welding currents. The results show that the guiding effect of the lamellar cathode on current density, the inertial drag effect of moving arc, and the attraction effect of Lorentz force at the lamellar cathode tip primarily govern the distribution of the arc's physical fields. The guiding effect localizes the current density to the front end of the lamellar cathode, particularly where the discharge gap is minimal. Both the inertial drag effect and the attraction effect of Lorentz force direct arc flow toward its periphery. Under the influence of the aforementioned factors, the physical fields of the lamellar cathode arc undergo expansion and shift counter to the arc's direction of motion. A reduction in welding current substantially weakens the guiding effect,causing the arc's physical fields to deviate further in the direction opposite to the arc motion. In comparison with a cylindrical cathode arc, the physical fields of the lamellar cathode arc are markedly expanded, leading to a reduction in current density, electron temperature, heavy particle temperature, cathode jet flow velocity, and Lorentz force. 展开更多
关键词 numerical simulation two-temperature model welding arc
在线阅读 下载PDF
Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field
11
作者 樊光琦 杨志杰 +4 位作者 孙烽豪 郑金梅 韩云天 黄明谦 刘情操 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期248-252,共5页
Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)la... Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process. 展开更多
关键词 nonsequential double ionization correlated electronelectron momentum distribution energy sharing of electrons orthogonally polarized two-color field laser field semiclassical ensemble models
原文传递
Mott Gap Filling by Doping Electrons through Depositing One Sub-Monolayer Thin Film of Rb on Ca_(2)CuO_(2)Cl_(2)
12
作者 李寒 王朝晖 +3 位作者 范圣泰 李华州 杨欢 闻海虎 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期90-96,共7页
Understanding the doping evolution from a Mott insulator to a superconductor probably holds the key to resolve the mystery of unconventional superconductivity in copper oxides. To elucidate the evolution of the electr... Understanding the doping evolution from a Mott insulator to a superconductor probably holds the key to resolve the mystery of unconventional superconductivity in copper oxides. To elucidate the evolution of the electronic state starting from the Mott insulator, we dose the surface of the parent phase Ca_(2)CuO_(2)Cl_(2) by depositing Rb atoms, which are supposed to donate electrons to the CuO_(2) planes underneath. We successfully achieved the Rb sub-monolayer thin films in forming the square lattice. The scanning tunneling microscopy or spectroscopy measurements on the surface show that the Fermi energy is pinned within the Mott gap but close to the edge of the charge transfer band. In addition, an in-gap state appears at the bottom of the upper Hubbard band(UHB), and the Mott gap will be significantly diminished. Combined with the Cl defect and the Rb adatom/cluster results, the electron doping is likely to increase the spectra weight of the UHB for the double occupancy. Our results provide information to understand the electron doping to the parent compound of cuprates. 展开更多
关键词 DOPING holds electron
原文传递
Erratum to“Tunneling Electrons Triggered Energy Transfer between Coherently Coupled Donor-Acceptor Molecules”
13
作者 Huifang Wang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第5期696-696,共1页
In the original publication of my article,“Tunneling Electrons Triggered Energy Transfer between Coherently Coupled Donor-Acceptor Molecules”,which was published in Chinese Journal of Chemical Physics,Vol.37,No.4,pa... In the original publication of my article,“Tunneling Electrons Triggered Energy Transfer between Coherently Coupled Donor-Acceptor Molecules”,which was published in Chinese Journal of Chemical Physics,Vol.37,No.4,pages 497-504,I have identified an innegligible error that requires correction.I apologize for any inconvenience and appreciate the opportunity to clarify it in the following:Error Description:In page 499,since the words “FIG.2(b,d)”in line 78 are mentioned earlier than the words“FIG.1(a)”in line 82 in the submitted manuscript,the order of Figure 1 and Figure 2 are changed automatically in the official publication of the article,which makes the logical relationship of the article confused to a significant degree. 展开更多
关键词 FIGURE TUNNEL electron
在线阅读 下载PDF
Two-temperature warm dense hydrogen as a test of quantum protons driven by orbital-free density functional theory electronic forces 被引量:2
14
作者 Dongdong Kang Kai Luo +1 位作者 Keith Runge S.B.Trickey 《Matter and Radiation at Extremes》 SCIE CAS 2020年第6期48-59,共12页
We consider a steady-state(but transient)situation in which a warm dense aggregate is a two-temperature system with equilibrium electrons at temperature T_(e),ions at T_(i),and T_(e)≠T_(i).Such states are achievable ... We consider a steady-state(but transient)situation in which a warm dense aggregate is a two-temperature system with equilibrium electrons at temperature T_(e),ions at T_(i),and T_(e)≠T_(i).Such states are achievable by pump–probe experiments.For warm dense hydrogen in such a twotemperature situation,we investigate nuclear quantum effects(NQEs)on structure and thermodynamic properties,thereby delineating the limitations of ordinary ab initio molecular dynamics.We use path integral molecular dynamics(PIMD)simulations driven by orbital-free density functional theory(OFDFT)calculations with state-of-the-art noninteracting free-energy and exchange-correlation functionals for the explicit temperature dependence.We calibrate the OFDFT calculations against conventional(explicit orbitals)Kohn–Sham DFT.We find that when the ratio of the ionic thermal de Broglie wavelength to the mean interionic distance is larger than about 0.30,the ionic radial distribution function is meaningfully affected by the inclusion of NQEs.Moreover,NQEs induce a substantial increase in both the ionic and electronic pressures.This confirms the importance of NQEs for highly accurate equation-of-state data on highly driven hydrogen.For Te>20 kK,increasing Te in the warm dense hydrogen has slight effects on the ionic radial distribution function and equation of state in the range of densities considered.In addition,we confirm that compared with thermostatted ring-polymer molecular dynamics,the primitive PIMD algorithm overestimates electronic pressures,a consequence of the overly localized ionic description from the primitive scheme. 展开更多
关键词 ORBITAL QUANTUM electronIC
在线阅读 下载PDF
The influence of boundary conditions on the distribution of energetic electrons during collisionless magnetic reconnection
15
作者 王磊 黄灿 +3 位作者 陈冬可 杨忠炜 杜爱民 葛亚松 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期79-84,共6页
We conducted 2-D particle-in-cell simulations to investigate the impact of boundary conditions on the evolution of magnetic reconnection. The results demonstrate that the boundary conditions are crucial to this evolut... We conducted 2-D particle-in-cell simulations to investigate the impact of boundary conditions on the evolution of magnetic reconnection. The results demonstrate that the boundary conditions are crucial to this evolution. Specifically, in the cases of traditional periodic boundary(PB) and fully-opened boundary(OB) conditions, the evolutions are quite similar before the system achieves the fastest reconnection rate. However, differences emerge between the two cases afterward. In the PB case, the reconnection electric field experiences a rapid decline and even becomes negative, indicating a reversal of the reconnection process. In contrast, the system maintains a fast reconnection stage in the OB case. Suprathermal electrons are generated near the separatrix and in the exhaust region of both simulation cases. In the electron density depletion layer and the dipolarization front region, a larger proportion of suprathermal electrons are produced in the OB case. Medium-energy electrons are mainly located in the vicinity of the X-line and downstream of the reconnection site in both cases. However, in the OB case, they can also be generated in the electron holes along the separatrix. Before the reverse reconnection stage, no high-energy electrons are present in the PB case. In contrast, about 20% of the electrons in the thin and elongated electron current layer are high-energy in the OB case. 展开更多
关键词 magnetic reconnection electron energization particle-in-cell simulation
在线阅读 下载PDF
The anisotropy of suprathermal electrons in the Martian ionosphere
16
作者 YuTian Cao Jun Cui +3 位作者 XiaoShu Wu WenJun Liang RuiQi Fu HaoYu Lu 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期459-471,共13页
Suprathermal electrons are an important population of the Martian ionosphere, either produced by photoionization of atmospheric neutrals or supplied from the Solar Wind (SW). This study is dedicated to an in-depth inv... Suprathermal electrons are an important population of the Martian ionosphere, either produced by photoionization of atmospheric neutrals or supplied from the Solar Wind (SW). This study is dedicated to an in-depth investigation of the pitch angle distribution of suprathermal electrons at two representative energies, 19−55 eV and 124−356 eV, using the extensive measurements made by the Solar Wind Electron Analyzer on board the Mars Atmosphere and Volatile Evolution. Throughout the study, we focus on the overall degree of anisotropy, defined as the standard deviation of suprathermal electron intensity among different directions which is normalized by the mean omni-directional intensity. The available data reveal the following characteristics: (1) In general, low energy electrons are more isotropic than high energy electrons, and dayside electrons are more isotropic than nightside electrons;(2) On the dayside, the anisotropy increases with increasing altitude at low energies but remains roughly constant at high energies, whereas on the nightside, the anisotropy decreases with increasing altitude at all energies;(3) Electrons tend to be more isotropic in strongly magnetized regions than in weakly magnetized regions, especially on the nightside. These observations indicate that the anisotropy is a useful diagnostic of suprathermal electron transport, for which the conversion between the parallel and perpendicular momenta as required by the conservation of the first adiabatic invariant, along with the atmospheric absorption at low altitudes, are two crucial factors modulating the observed variation of the anisotropy. Our analysis also highlights the different roles on the observed anisotropy exerted by suprathermal electrons of different origins. 展开更多
关键词 MARS IONOSPHERE suprathermal electron pitch angle distribution
在线阅读 下载PDF
Re-delocalization of localized d-electrons in VO_(2)(R)-VS_(4)hetero-structure enables high performance of rechargeable Mg-ion batteries
17
作者 Lijiao Zhou Chao Shen +3 位作者 Xueyang Hou Zhao Fang Ting Jin Keyu Xie 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1830-1840,共11页
Rechargeable Mg-ion batteries(MIBs)have attracted much more attentions by virtue of the high capacity from the two electrons chemistry.However,the reversible Mg^(2+)diffusion in cathode materials is restricted by the ... Rechargeable Mg-ion batteries(MIBs)have attracted much more attentions by virtue of the high capacity from the two electrons chemistry.However,the reversible Mg^(2+)diffusion in cathode materials is restricted by the strong interactions between the high-polarized bivalent Mg^(2+)ions and anionic lattice.Herein,we design and propose a hetero-structural VO_(2)(R)-VS_(4)cathode,in which the re-delocalized d-electrons can effectively shield the polarity of Mg^(2+)ions.Theoretically,the electrons should spontaneously transfer from VS_(4)to VO_(2)(R)through the interfaces of hetero-structure due to the lower work function value of VS_(4).Furthermore,the internal electrons transfer lead to the electronic injection into VO_(2)(R)from VS_(4)and the partially broken V-V dimers,indicating the presence of lone pair electrons and charge re-delocalization.Benefiting from the shield effect of re-delocalized electrons,and the weakened attraction between cations and O/S anions enables more S^(2-)-S_(2)^(2-)redox groups to participate the electrochemical reactions and compensate the double charge of Mg^(2+)ions.Accordingly,VO_(2)(R)-VS_(4)hetero-structure exhibits a high specific capacity of 554 mA h g^(-1)at 50 mA g^(-1).It is believed that the charge re-delocalization of cathode extremely boost the Mg^(2+)ions migration for the high-capacity of MIBs. 展开更多
关键词 Mg-ion batteries Cathode Charge delocalization electronic structure HETEROSTRUCTURE
在线阅读 下载PDF
A statistical analysis of the Kappa-type energy spectrum distribution of radiation belt electrons observed by Van Allen Probes
18
作者 LuHuai Jiao Xin Ma +3 位作者 YuanNong Zhang TaiFeng Jin Song Fu BinBin Ni 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期368-374,共7页
The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa di... The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa distributions are inadequate for capturing the realistic spectral distributions of radiation belt electrons.Here we adopt the Kappa-type(KT)distribution as the fitting function and perform a statistical analysis to investigate the radiation belt electron flux spectra observed by the Van Allen Probes.By calculating the optimal values of the key KT distribution parameters(i.e.,κandθ2)from the observed spectral shapes,we fit the radiation belt electron fluxes at different L-shells under different geomagnetic conditions.In this manner,we obtain typical values of the KT distribution parameters,which are statistically feasible for modeling the radiation belt electron flux profiles during either geomagnetically quiet or active periods.A comparison of the KT distribution model results with those using the Maxwellian or Kappa distribution reveals the advantage of the KT distribution for studying the overall properties of the radiation belt electron spectral distribution,which has important implications for deepening the current understanding of the radiation belt electron dynamics under evolving geomagnetic conditions. 展开更多
关键词 radiation belt electron Kappa-type distribution fitting geomagnetic storm
在线阅读 下载PDF
Nonlinear ion acoustic waves in multicomponent plasmas with nonthermal electrons-positron and bipolar ions
19
作者 Mai-Mai Lin Chen-Guang Song +1 位作者 Fu-Yan Chen Ming-Yue Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期324-332,共9页
This paper studied the propagating characteristics of(2+1)-dimensional nonlinear ion acoustic waves in a multicomponent plasma with nonthermal electrons,positrons,and bipolar ions.The dispersion relations are initiall... This paper studied the propagating characteristics of(2+1)-dimensional nonlinear ion acoustic waves in a multicomponent plasma with nonthermal electrons,positrons,and bipolar ions.The dispersion relations are initially explored by using the small amplitude wave's dispersion relation.Then,the Sagdeev potential method is employed to study large amplitude ion acoustic waves.The analysis involves examining the system's phase diagram,Sagdeev potential function,and solitary wave solutions through numerical solution of an analytical process in order to investigate the propagation properties of nonlinear ion acoustic waves under various parameters.It is found that the propagation of nonlinear ion acoustic waves is subject to the influence of various physical parameters,including the ratio of number densities between the unperturbed positrons,electrons to positive ions,nonthermal parameters,the mass ratio of positive ions to negative ions,and the charge number ratio of negative ions to positive ions,the ratio of the electrons'temperature to positrons'temperature.In addition,the multicomponent plasma system has a compressive solitary waves with amplitude greater than zero or a rarefactive solitary waves with amplitude less than zero,in the meantime,compressive and rarefactive ion acoustic wave characteristics depend on the charge number ratio of negative ions to positive ions. 展开更多
关键词 nonlinear ion acoustic waves nonthermal electrons bipolar ions Sagdeev potential method
原文传递
Bound-state electrons synergy over photochromic high-crystalline C_(3)N_(5) nanosheets in enhancing charge separation for photocatalytic H_(2) production 被引量:1
20
作者 Yu Shen Xin Du +7 位作者 Yuxing Shi Loic Jiresse Nguetsa Kuate Zhouze Chen Cheng Zhu Lei Tan Feng Guo Shijie Li Weilong Shi 《Advanced Powder Materials》 2024年第4期92-102,共11页
Solar-driven water splitting for photocatalytic hydrogen evolution is considered a highly promising and costeffective solution to achieve a stable renewable energy supply.However,the sluggish kinetics of electron-hole... Solar-driven water splitting for photocatalytic hydrogen evolution is considered a highly promising and costeffective solution to achieve a stable renewable energy supply.However,the sluggish kinetics of electron-hole pairs’separation poses challenges in attaining satisfactory hydrogen production efficiency.Herein,we synthesized the exceptional performance of highly crystalline C_(3)N_(5)(HC–C_(3)N_(5))nanosheet as a photocatalyst,demonstrating a remarkable hydrogen evolution rate of 3.01 mmol h^(-1)g^(-1),which surpasses that of bulk C_(3)N_(5)(B–C_(3)N_(5))by a factor of 3.27.Experimental and theoretical analyses reveal that HC-C_(3)N_(5)nanosheets exhibit intriguing macroscopic photoinduced color changes,effectively broadening the absorption spectrum and significantly enhancing the generation of excitons.Besides,the cyano groups in HC-C_(3)N_(5)efficiently captures and converts photoexcited electrons into bound states,thereby prolonging their lifetimes and effectively separating electrons and holes into catalytically active regions.This research provides valuable insights into the establishment of bound electronic states for developing efficient photocatalysts. 展开更多
关键词 Bound-state electrons PHOTOCHROMIC C_(3)N_(5) High-crystalline Photocatalytic H2 production
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部