A new hybrid organic-inorganic structure of FTO/TiO2/Se/HTL/Au based selenium solar cell has been fabricated through a low-cost spin-coating process in air. In this process, selenium is completely dissolved in hydrazi...A new hybrid organic-inorganic structure of FTO/TiO2/Se/HTL/Au based selenium solar cell has been fabricated through a low-cost spin-coating process in air. In this process, selenium is completely dissolved in hydrazine, to fk)rm a homogeneous precursor solution. After spin-coating the precursor solution on the TiO2 substrates, following by sintering at 200 ℃ for 5rain, a uniform selenium film with crystalline grains is formed. The selenium based solar cell exhibits an efficiency of 1.23% under AM1.5 illumination (100 mW.cm-2), short-circuit current density of 8 mA.cm 2, open-circuit voltage of 0.55 V, and fill factor of 0.37. Moreover, the device shows a stable ability with almost the same performance alter 60 days.展开更多
Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2&...Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2·2H_2O] as precursor and isopropanol and monoethanolamine(MEA) as solvent and stabilizer, respectively. The molar ratio of zinc acetate dehydrate to MEA is 1.0. X-ray diffraction, ultraviolet-visible spectroscopy and photoluminescence spectroscopy are employed to investigate the effect of solution concentration on the structural and optical properties of the ZnO thin films. The obtained results of all thin films are discussed in detail and are compared with other experimental data.展开更多
Scintillation light from a liquid noble gas during a neutrino or dark matter experiment lies typically within the vacuum ultraviolet region and might be strongly absorbed by surrounding materials such as light guides ...Scintillation light from a liquid noble gas during a neutrino or dark matter experiment lies typically within the vacuum ultraviolet region and might be strongly absorbed by surrounding materials such as light guides or photomultipliers.Tetraphenyl butadiene(TPB)is a fluorescent material,acts as a wavelength shifter,and can turn UV light into visible light at a peak wavelength of approximately 425 nm,enabling the light signals to be easily detected during physics studies.Compared with a traditional TPB coating method using vapor deposition,we propose an alternative technique applying a spin-coating procedure to facilitate the development of neutrino and dark matter detectors.This article introduces a method to fabricate a TPB film on an acrylic substrate by using a spincoating method,reports the measurements of the sample film thickness and roughness,demonstrates the reemission spectrum,and quantifies the wavelength shifting efficiency.展开更多
ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-r...ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.展开更多
In CZTSSe solar cells,a simple sodium-incorporation post-treatment method toward solution-processed Cu2Zn Sn S4precursor films is presented in this work.An ultrathin NaCl film is deposited on Cu2Zn Sn S4precursor film...In CZTSSe solar cells,a simple sodium-incorporation post-treatment method toward solution-processed Cu2Zn Sn S4precursor films is presented in this work.An ultrathin NaCl film is deposited on Cu2Zn Sn S4precursor films by spin-coating NaCl solution.In subsequent selenization process,the introduction of Na Cl is found to be benefacial for the formation of Cu2-xSe,which can further facilitate the element transportation,leading to dense and smooth CZTSSe films with large grains and less impurity Cu2Sn(S,Se)3phase.SIMS depth profiles confirm the gradient distribution of the sodium element in Na-doped absorbers.Photoluminescence spectra show that the introduction of appropriate sodium into the absorber can inhibit the band tail states.As high as 11.18% of power conversion efficiency(PCE)is achieved for the device treated with 5 mg mL^-1 NaCl solution,and an average efficiency of Na-doped devices is 10.71%,13%higher than that of the control groups(9.45%).Besides,the depletion width and the charge recombination lifetime can also have regular variation with sodium treatment.This work offers an easy modification method for high-quality Na-doped CZTSSe films and high-performance devices,in the meantime,it can also help to further understand the effects of sodium in CZTSSe solar cells.展开更多
Nanocrystalline ZnO thin films have been fabricated by a multi-step solgel method using spin coating technique. Zinc acetate dihydrate, 2-methoxyethanol and monoethanolamine were used as a starting material, solvent a...Nanocrystalline ZnO thin films have been fabricated by a multi-step solgel method using spin coating technique. Zinc acetate dihydrate, 2-methoxyethanol and monoethanolamine were used as a starting material, solvent and stabilizer, respectively. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were employed to characterize structure and morphologies of the as-deposited samples. The results of XRD and SEM showed that the heat treatment conditions, final rotational (spinning) speed, fume exhaust and precise control of concentration of reactants (precursor and solvent used) strongly affect the crystallographic orientation and morphology of the resultant ZnO films. The XRD pattern showed that the ZnO films formed the preferred orientation along c-axis and the grain size is 16nm for the samples. Only one peak corresponding to the (002) plane at 2θ = 34.34 appears on the diffractograms. The as-deposited films had a transparency of greater than 80% in the visible-near IR region from 400 nm - 800 nm. The optical band gap energy and thickness were calculated to be 3.296 eV and 266 nm respectively.展开更多
Zinc oxide (ZnO) nanorods have been synthesized by solution processing hydrothermal method in low temperature using the spin coating technique. Zinc acetate dehydrate, Zinc nitrate hexahydrate and hexamethylenetetrami...Zinc oxide (ZnO) nanorods have been synthesized by solution processing hydrothermal method in low temperature using the spin coating technique. Zinc acetate dehydrate, Zinc nitrate hexahydrate and hexamethylenetetramine were used as a starting material. The ZnO seed layer was first deposited by spin coated of ethanol zinc acetate dehydrate solution on a glass substrate. ZnO nanorods were grown on the ZnO seed layer from zinc nitrate hexahydrate and hexamethylene-tetramine solution, and their diameters, lengths were controlled by precursor concentration and development time. From UV-Visible spectrometry the optical band gap energy of ZnO nanorods was calculated to be 3.3 eV. The results of X-Ray Diffraction (XRD) showed the highly oriented nature of ZnO nanorods the hardest (002) peak reflects that c-axis elongated nanorods are oriented normal to the glass substrate. The Field Emission Scanning Electron Microscope (FESEM) was employed to measure both of average diameter of ZnO nanorods, Energy Dispersive X-Ray (EDX) is used to identify the elemental present and to determine the element composition in the samples.展开更多
In this work,we have presented a spin-coating method to produce thin films started with pure BiCrO3(BCO)and ended up with BiFeO3(BFO)by increasing x values in the(BiFeO3)x-(BiCrO3)1-x composites.All the produc...In this work,we have presented a spin-coating method to produce thin films started with pure BiCrO3(BCO)and ended up with BiFeO3(BFO)by increasing x values in the(BiFeO3)x-(BiCrO3)1-x composites.All the produced thin films have been crystallized at the annealing temperatures of 400 ℃ for 0.5 h.The XRD and EDAX spectrums give insight that the two crystal phases related to BCO and BFO stayed together within the thin film matrices.SEM analysis showed that the prepared composite had macroporous morphology with interconnected pores and its width(size)decreased with increasing x values.The strong correlations are observed among the microstructure,dielectric,ferroelectric,ferromagnetic properties and Fe concentration.Among all composites,the composition of 0.75 shows an attractive magnetization,polarization,switching and improved dielectric behaviors at room temperature.Significant increase in the multiferroic characteristics of 0.75 composition is due to arise of lower leakage current by causing reduction in oxygen vacancy density,and enhancement of super-exchange magnetic interaction between Fe3+ and Cr3+ at BFO/BCO interface layers.Our result shows that the thin layer on Pt(111)/Ti/SiO2/Si substrate possesses simultaneously improved ferroelectric and ferromagnetic properties which make an inaccessible potential application for nonvolatile ferroelectric memories.展开更多
Thin films of iron(Fe)-doped titanium dioxide(Fe:TiO_(2))T were prepared by sol–gel spin coating technique and further calcined at 450℃.The structural and optical properties of Fe-doped TiO_(2) thin films were inves...Thin films of iron(Fe)-doped titanium dioxide(Fe:TiO_(2))T were prepared by sol–gel spin coating technique and further calcined at 450℃.The structural and optical properties of Fe-doped TiO_(2) thin films were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),ultraviolet–visible spectroscopy(UV–vis)and atomic force microscopic(AFM)techniques.The XRD results confirm the nanostructured TiO_(2) thin films having crystalline nature with anatase phase.The characterization results show that the calcined thin films having high crystallinity and the effect of iron substitution lead to decreased crystallinity.The SEM investigations of Fe-doped TiO_(2) films also gave evidence that the films were continuous spherical shaped particles with a nanometric range of grain size and film was porous in nature.AFM analysis establishes that the uniformity of the TiO_(2) thin film with average roughness values.The optical measurements show that the films having high transparency in the visible region and the optical band gap energy of Fe-doped TiO_(2) film with iron(Fe)decrease with increase in iron content.These important requirements for the Fe:TiO_(2) films are to be used as window layers in solar cells.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51579057,5177090655,and 51379052)the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,China(Grant No.2016DX07)
文摘A new hybrid organic-inorganic structure of FTO/TiO2/Se/HTL/Au based selenium solar cell has been fabricated through a low-cost spin-coating process in air. In this process, selenium is completely dissolved in hydrazine, to fk)rm a homogeneous precursor solution. After spin-coating the precursor solution on the TiO2 substrates, following by sintering at 200 ℃ for 5rain, a uniform selenium film with crystalline grains is formed. The selenium based solar cell exhibits an efficiency of 1.23% under AM1.5 illumination (100 mW.cm-2), short-circuit current density of 8 mA.cm 2, open-circuit voltage of 0.55 V, and fill factor of 0.37. Moreover, the device shows a stable ability with almost the same performance alter 60 days.
文摘Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2·2H_2O] as precursor and isopropanol and monoethanolamine(MEA) as solvent and stabilizer, respectively. The molar ratio of zinc acetate dehydrate to MEA is 1.0. X-ray diffraction, ultraviolet-visible spectroscopy and photoluminescence spectroscopy are employed to investigate the effect of solution concentration on the structural and optical properties of the ZnO thin films. The obtained results of all thin films are discussed in detail and are compared with other experimental data.
基金supported in part by the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515012216)the National Natural Science Foundation of China(No.11505301)the Innovation Training Program for bachelor students at the School of Physics in SYSU
文摘Scintillation light from a liquid noble gas during a neutrino or dark matter experiment lies typically within the vacuum ultraviolet region and might be strongly absorbed by surrounding materials such as light guides or photomultipliers.Tetraphenyl butadiene(TPB)is a fluorescent material,acts as a wavelength shifter,and can turn UV light into visible light at a peak wavelength of approximately 425 nm,enabling the light signals to be easily detected during physics studies.Compared with a traditional TPB coating method using vapor deposition,we propose an alternative technique applying a spin-coating procedure to facilitate the development of neutrino and dark matter detectors.This article introduces a method to fabricate a TPB film on an acrylic substrate by using a spincoating method,reports the measurements of the sample film thickness and roughness,demonstrates the reemission spectrum,and quantifies the wavelength shifting efficiency.
基金Project supported by the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates, China (Grant No. 292122)the Equipment Research Foundation of China (Grant No. 373974)
文摘ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.
基金financially supported by the National Natural Science Foundation of China (Nos. 51421002, 51627803, 91733301, 51761145042, 21501183, 51402348, 53872321, and 11874402)the Knowledge Innovation Program and the Strategic Priority Research Program (Grant XDB 12010400) of the Chinese Academy of Sciences
文摘In CZTSSe solar cells,a simple sodium-incorporation post-treatment method toward solution-processed Cu2Zn Sn S4precursor films is presented in this work.An ultrathin NaCl film is deposited on Cu2Zn Sn S4precursor films by spin-coating NaCl solution.In subsequent selenization process,the introduction of Na Cl is found to be benefacial for the formation of Cu2-xSe,which can further facilitate the element transportation,leading to dense and smooth CZTSSe films with large grains and less impurity Cu2Sn(S,Se)3phase.SIMS depth profiles confirm the gradient distribution of the sodium element in Na-doped absorbers.Photoluminescence spectra show that the introduction of appropriate sodium into the absorber can inhibit the band tail states.As high as 11.18% of power conversion efficiency(PCE)is achieved for the device treated with 5 mg mL^-1 NaCl solution,and an average efficiency of Na-doped devices is 10.71%,13%higher than that of the control groups(9.45%).Besides,the depletion width and the charge recombination lifetime can also have regular variation with sodium treatment.This work offers an easy modification method for high-quality Na-doped CZTSSe films and high-performance devices,in the meantime,it can also help to further understand the effects of sodium in CZTSSe solar cells.
文摘Nanocrystalline ZnO thin films have been fabricated by a multi-step solgel method using spin coating technique. Zinc acetate dihydrate, 2-methoxyethanol and monoethanolamine were used as a starting material, solvent and stabilizer, respectively. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were employed to characterize structure and morphologies of the as-deposited samples. The results of XRD and SEM showed that the heat treatment conditions, final rotational (spinning) speed, fume exhaust and precise control of concentration of reactants (precursor and solvent used) strongly affect the crystallographic orientation and morphology of the resultant ZnO films. The XRD pattern showed that the ZnO films formed the preferred orientation along c-axis and the grain size is 16nm for the samples. Only one peak corresponding to the (002) plane at 2θ = 34.34 appears on the diffractograms. The as-deposited films had a transparency of greater than 80% in the visible-near IR region from 400 nm - 800 nm. The optical band gap energy and thickness were calculated to be 3.296 eV and 266 nm respectively.
文摘Zinc oxide (ZnO) nanorods have been synthesized by solution processing hydrothermal method in low temperature using the spin coating technique. Zinc acetate dehydrate, Zinc nitrate hexahydrate and hexamethylenetetramine were used as a starting material. The ZnO seed layer was first deposited by spin coated of ethanol zinc acetate dehydrate solution on a glass substrate. ZnO nanorods were grown on the ZnO seed layer from zinc nitrate hexahydrate and hexamethylene-tetramine solution, and their diameters, lengths were controlled by precursor concentration and development time. From UV-Visible spectrometry the optical band gap energy of ZnO nanorods was calculated to be 3.3 eV. The results of X-Ray Diffraction (XRD) showed the highly oriented nature of ZnO nanorods the hardest (002) peak reflects that c-axis elongated nanorods are oriented normal to the glass substrate. The Field Emission Scanning Electron Microscope (FESEM) was employed to measure both of average diameter of ZnO nanorods, Energy Dispersive X-Ray (EDX) is used to identify the elemental present and to determine the element composition in the samples.
基金supported by Department of Science and Technology (SB/S2/CMP- 028/2013), New Delhi, India
文摘In this work,we have presented a spin-coating method to produce thin films started with pure BiCrO3(BCO)and ended up with BiFeO3(BFO)by increasing x values in the(BiFeO3)x-(BiCrO3)1-x composites.All the produced thin films have been crystallized at the annealing temperatures of 400 ℃ for 0.5 h.The XRD and EDAX spectrums give insight that the two crystal phases related to BCO and BFO stayed together within the thin film matrices.SEM analysis showed that the prepared composite had macroporous morphology with interconnected pores and its width(size)decreased with increasing x values.The strong correlations are observed among the microstructure,dielectric,ferroelectric,ferromagnetic properties and Fe concentration.Among all composites,the composition of 0.75 shows an attractive magnetization,polarization,switching and improved dielectric behaviors at room temperature.Significant increase in the multiferroic characteristics of 0.75 composition is due to arise of lower leakage current by causing reduction in oxygen vacancy density,and enhancement of super-exchange magnetic interaction between Fe3+ and Cr3+ at BFO/BCO interface layers.Our result shows that the thin layer on Pt(111)/Ti/SiO2/Si substrate possesses simultaneously improved ferroelectric and ferromagnetic properties which make an inaccessible potential application for nonvolatile ferroelectric memories.
基金National Natural Science Foundation of China(No.52161040)Major Science and Technology Research and Development Project of Jiangxi Province(No.20203ABC28W006)+1 种基金Natural Science Foundation of Jiangxi Province,China,(No.20202ACBL214011)Key Project of"Science and Technology to Promote Mongolian Development",China(No.XM2021BT03)。
文摘Thin films of iron(Fe)-doped titanium dioxide(Fe:TiO_(2))T were prepared by sol–gel spin coating technique and further calcined at 450℃.The structural and optical properties of Fe-doped TiO_(2) thin films were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),ultraviolet–visible spectroscopy(UV–vis)and atomic force microscopic(AFM)techniques.The XRD results confirm the nanostructured TiO_(2) thin films having crystalline nature with anatase phase.The characterization results show that the calcined thin films having high crystallinity and the effect of iron substitution lead to decreased crystallinity.The SEM investigations of Fe-doped TiO_(2) films also gave evidence that the films were continuous spherical shaped particles with a nanometric range of grain size and film was porous in nature.AFM analysis establishes that the uniformity of the TiO_(2) thin film with average roughness values.The optical measurements show that the films having high transparency in the visible region and the optical band gap energy of Fe-doped TiO_(2) film with iron(Fe)decrease with increase in iron content.These important requirements for the Fe:TiO_(2) films are to be used as window layers in solar cells.