This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investi...This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.展开更多
The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ...The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ((NH4)2S2O8) with nitrilo triacetic acid as an activator in microemulsion and H2SO4 medium. Under optimum conditions, there was the linearity of the calibration curve in the concentration range from 0 to 20 μg/L Au(Ⅲ) at 520 nm. The relative standard deviation was 3.0% with a correlation coefficient of 0.9986. The detection limit achieved was 9.75 × 10^-5 μg/mL. A new method using a column packed with sulfhydryl dextrose gel (SDG) as a solid-phase extractant has been developed for the preconcentration and separation of Au(Ⅲ) ions. The method has been applied to the determination of trace gold with satisfactory results.展开更多
Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un...Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.展开更多
Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and ab...Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and absorption characteristics of the films were also studied. Scanning electron microscopy revealed large crystals and substrate coverage. The orthorhombic-to-tetragonal phase transition temperature was-140 K. The films' exciton binding energy was 77.6 ± 10.9 meV and the energy of optical phonons was 38.8 ± 2.5 meV. These results suggest that perovskite CH3NH3Pb I(3-x)Clx films have excellent optoelectronic characteristics which further suggests their potential usage in perovskitebased optoelectronic devices.展开更多
The distribution of remaining oil is often described qualitatively. The remaining oil distributed in the whole reservoir is calculated according to the characteristics of the space distribution of the saturation of re...The distribution of remaining oil is often described qualitatively. The remaining oil distributed in the whole reservoir is calculated according to the characteristics of the space distribution of the saturation of remaining oil. Logging data are required to accomplish this. However, many such projects cannot be completed. Since the old study of remaining oil distribution could not be quantified efficiently, the "dynamic two-step method" is presented. Firstly, the water cut of every flow unit in one well at one time is calculated according to the comprehensive water cut of a single well at one time. Secondly, the remaining oil saturation of the flow unit of the well at one time is calculated based on the water cut of the flow unit at a given time. The results show that "dynamic two-step method" has characteristics of simplicity and convenience, and is especially suitable for the study of remaining oil distribution at high water-cut stage. The distribution of remaining oil presented banding and potato form, remaining oil was relatively concentrated in faultage neighborhood and imperfect well netting position, and the net thickness of the place was great. This proposal can provide an effective way to forecast remaining oil distribution and enhance oil recovery, especially applied at the high water-cut stage.展开更多
ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis ...ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.展开更多
In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.1...In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.展开更多
Chitosan was prepared with stressing method by blending chitin and solid alkali in a single-screw extruder at given temperature and characterized by potentiometric titration,gel permeation chromatography(GPC),infrared...Chitosan was prepared with stressing method by blending chitin and solid alkali in a single-screw extruder at given temperature and characterized by potentiometric titration,gel permeation chromatography(GPC),infrared spectrum(IR)and carbon-13 magnetic resonance sperctroscopy(^(13)C NMR).Chitosan with a deacetylation degree(DD)of 76.1%was obtained at a mass ratio 0.2∶1∶1 for H_2 O/chitin/NaOH at 160℃for 12 min.Compared to conventional solution method(usually 1∶10 for chitin/NaOH),the alkali assumption greatly decreased.Molecular weight of chitosan obtained by solid-phase method(S3,M_w1.54×10^(5))was lower than that obtained by suspension method(Y2,M_w3.34×10^(5)).During deacetylation,molecular weight decreased with high reaction temperature and long reaction time but remained same at different initial ratios of NaOH/chitin.It might be concluded that degradation of chitosan was caused by breakout of the main chain of the oxidized chitosan catalyzed by alkali during the deactylation.IR and^(13)C NMR showed that structures of chitosans prepared by solid-phase method were not changed.展开更多
Under the assumption that the nonlinear operator has Lipschitz continuous divided differences for the first order,we obtain an estimate of the radius of the convergence ball for the two-step secant method.Moreover,we ...Under the assumption that the nonlinear operator has Lipschitz continuous divided differences for the first order,we obtain an estimate of the radius of the convergence ball for the two-step secant method.Moreover,we also provide an error estimate that matches the convergence order of the two-step secant method.At last,we give an application of the proposed theorem.展开更多
Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method mor...Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method more easily controls the crystallization rate and is suitable for preparing large-area per-ovskite devices.However,the residual low-conductivity iodide layer in the two-step method can affect carrier transport and device stability,and the different crystallization rates of Sn-and Pb-based per-ovskites may result in poor film quality.Therefore,Sn-Pb mixed perovskites are mainly prepared by a one-step method.Herein,a MAPb_(0.5)Sn_(0.5)I_(3)-based self-powered photodetector without a hole transport layer is fabricated by a two-step method.By adjusting the concentration of the ascorbic acid(AA)addi-tive,the final perovskite film exhibited a pure phase without residues,and the optimal device exhibited a high responsivity(0.276 A W^(-1)),large specific detectivity(2.38×10^(12) Jones),and enhanced stability.This enhancement is mainly attributed to the inhibition of Sn2+oxidation,the control of crystal growth,and the sufficient reaction between organic ammonium salts and bottom halides due to the AA-induced pore structure.展开更多
The Adomian decomposition method (ADM) can be used to solve a wide range of problems and usually gets the solution in a series form. In this paper, we propose two-step Adomian Decomposition Method (TSAM) for nonlinear...The Adomian decomposition method (ADM) can be used to solve a wide range of problems and usually gets the solution in a series form. In this paper, we propose two-step Adomian Decomposition Method (TSAM) for nonlinear integro-differential equations that will facilitate the calculations. In this modification, compared to the standard Adomian decomposition method, the size of calculations was reduced. This modification also avoids computing Adomian polynomials. Numerical results are given to show the efficiency and performance of this method.展开更多
The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationsh...The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationship between the diffusion coefficient along the direction of z-axis which is normal to the Mg/Zn interface and temperature was investigated, and the AF's impact on the diffusion constant (D0) and activation energy (Q^*) was studied. Then, two steps were taken to simulate the atomic diffusion process and the formation of new phases: one for acceleration and the other for equilibration. The results show that: the Arrhenius equation works well for the description of Dz with different accelerating factors; the AF has no effect on the diffusion constant Do in the case of no phase transition; and the relationship between Q* and Q conforms to Q^*=Q/A. Then, the new Arrhenius equation for AFHD is successfully constructed as Dz=Doexp[-Q/(ART)]. Meanwhile, the authentic equilibrium conformations at any dynamic moment can only be reproduced by the equilibration simulation of the HD-simulated configurations. Key words: accelerating factor method; Arrhenius equation; two-steps scheme; Mg/Zn interface; hyperdynamic simulation展开更多
The paper aims to demonstrate the system of SANYI biogas power generation by two-step method which can produce methane and generate electricity effectively and stably.So it can be stable synchronization meshwork energ...The paper aims to demonstrate the system of SANYI biogas power generation by two-step method which can produce methane and generate electricity effectively and stably.So it can be stable synchronization meshwork energy source establishment and provide references to develop an effective and stable project of producing methane and generating electricity.展开更多
A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of tw...A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of two steps, namely single-crystal nucleation and growth. Prior to the fabrication of the well-faceted, large crystal diamond, an investigation was made into the nucleation and growth of the diamond which were affected by the O2 concentration and substrate temperature. Deposited diamond crystals were characterized by scanning electron microscopy and micro-Raman spectroscopy. The results showed that the conditions of single-crystal nucleation were appropriate when the ratio of H2/CH4/O2 was about 200/7.0/2.0, while the sub- strate temperature Ts of 1000℃ to 1050℃ was the appropriate range for single-crystal diamond growth. Under the optimum parameters, a well-faeeted large crystal diamond was obtained.展开更多
Ionic liquids(ILs)have been widely applied in the one-step fabrication of perovskite with noticeable enhancement in the device performance.However,in-depth mechanism of ionic-liquid-assisted perovskite film formation ...Ionic liquids(ILs)have been widely applied in the one-step fabrication of perovskite with noticeable enhancement in the device performance.However,in-depth mechanism of ionic-liquid-assisted perovskite film formation is not well understood for also important two-step perovskite fabrication method,with better control of crystallization behavior.In this work,we introduced ionic liquid methylammonium formate(MAFa)into organic salt to produce perovskite film via a two-step method.Systematic investigations on the influence of MAFa on the perovskite thin film formation mechanism were performed.Ionic liquid is shown to assist lowering the perovskite formation enthalpy upon the density functional theory(DFT)calculation,leading to an accelerated crystallization process evidenced by in-situ UV-Vis absorption measurement.A gradient up-down distribution of ionic liquid has been confirmed by timeof-flight SIMS.Importantly,besides the surface passivation,we found the HCOO-can diffuse into the perovskite crystals to fill up the halide vacancies,resulting in significant reduction of trap states.Uniform perovskite films with significantly larger grains and less defect density were prepared with the help of MAFa IL,and the corresponding device efficiency over 23%was obtained by two-step process with remarkably improved stability.This research work provides an efficient strategy to tune the morphology and opto-electronic properties of perovskite materials via ionic-liquid-assisted two-step fabrication method,which is beneficial for upscaling and application of perovskite photovoltaics.展开更多
An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditio...An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.展开更多
In this note we at first briefly review iterative methods for effectively approaching a root of an unknown multiplicity. We describe a first order, then a second order estimate for the multiplicity index m of the appr...In this note we at first briefly review iterative methods for effectively approaching a root of an unknown multiplicity. We describe a first order, then a second order estimate for the multiplicity index m of the approached root. Next we present a second order, two-step method for iteratively nearing a root of an unknown multiplicity. Subsequently, we introduce a novel chord, or a two- step method, not requiring beforehand knowledge of the multiplicity index m of the sought root, nor requiring higher order derivatives of the equilibrium function, which is quadratically convergent for any , and then reverts to superlinear.展开更多
Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motiva...Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.展开更多
To date, it is still a great challenge for highly efficient perovskite devices to realize the high quality per- ovskite films with high purity, high coverage ratio and good crystallization by two-step scalable solutio...To date, it is still a great challenge for highly efficient perovskite devices to realize the high quality per- ovskite films with high purity, high coverage ratio and good crystallization by two-step scalable solution method. In this study, a series PbI2 films with tunable micro-architecture of Pbl2 crystals are prepared via solution processable crystal engineering. The perovskite film, prepared by optimized pit spacing in gas pumped PbI2 film at 1000 Pa, shows the highest film quality, including no residual Pbl2 phase, compact morphology, and improved photoluminescence intensity. A transformation kinetics shows that the pit spacing strongly influences both the mass transfer and the sequential intercalation reaction between CH3NH31 and PbI2 crystals, which ultimately determines the full reaction state of the perovskite film. The perovskite solar cells assembled by the perovskite film show both high power-conversion efficiency and good reproducibility of photovoltaic performance due to the restrained charge recombination arising from the high quality perovskite film.展开更多
基金supported by the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(2023yjrc51)the National Natural Science Foundation of China(22172184)+2 种基金the Foundation of State Key Laboratory of Coal Conversion(J24-25-603)the Fundamental Research Project of ICC-CAS(SCJC-DT-2023-01)Weiqiao-UCAS Special Projects on Low-Carbon Technology Development(GYY-DTFZ-2022-015)。
文摘This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.
文摘The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ((NH4)2S2O8) with nitrilo triacetic acid as an activator in microemulsion and H2SO4 medium. Under optimum conditions, there was the linearity of the calibration curve in the concentration range from 0 to 20 μg/L Au(Ⅲ) at 520 nm. The relative standard deviation was 3.0% with a correlation coefficient of 0.9986. The detection limit achieved was 9.75 × 10^-5 μg/mL. A new method using a column packed with sulfhydryl dextrose gel (SDG) as a solid-phase extractant has been developed for the preconcentration and separation of Au(Ⅲ) ions. The method has been applied to the determination of trace gold with satisfactory results.
基金supported by the National Natural Science Foundation of China(No.92252201)the Fundamental Research Funds for the Central Universitiesthe Academic Excellence Foundation of Beihang University(BUAA)for PhD Students。
文摘Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.
基金supported by the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun City,China(Grant No.12ZX68)
文摘Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and absorption characteristics of the films were also studied. Scanning electron microscopy revealed large crystals and substrate coverage. The orthorhombic-to-tetragonal phase transition temperature was-140 K. The films' exciton binding energy was 77.6 ± 10.9 meV and the energy of optical phonons was 38.8 ± 2.5 meV. These results suggest that perovskite CH3NH3Pb I(3-x)Clx films have excellent optoelectronic characteristics which further suggests their potential usage in perovskitebased optoelectronic devices.
文摘The distribution of remaining oil is often described qualitatively. The remaining oil distributed in the whole reservoir is calculated according to the characteristics of the space distribution of the saturation of remaining oil. Logging data are required to accomplish this. However, many such projects cannot be completed. Since the old study of remaining oil distribution could not be quantified efficiently, the "dynamic two-step method" is presented. Firstly, the water cut of every flow unit in one well at one time is calculated according to the comprehensive water cut of a single well at one time. Secondly, the remaining oil saturation of the flow unit of the well at one time is calculated based on the water cut of the flow unit at a given time. The results show that "dynamic two-step method" has characteristics of simplicity and convenience, and is especially suitable for the study of remaining oil distribution at high water-cut stage. The distribution of remaining oil presented banding and potato form, remaining oil was relatively concentrated in faultage neighborhood and imperfect well netting position, and the net thickness of the place was great. This proposal can provide an effective way to forecast remaining oil distribution and enhance oil recovery, especially applied at the high water-cut stage.
基金supported by the Natural Science Foundation of China(No.21174114)the Ministry of Education Plan for Yangtze River Scholar and Innovation Team Development(No.IRT1177)+2 种基金Scientific and Technical Plan Project of Gansu Province(No. 1204GKCA006)the Natural Science Foundation of Gansu Province (No.1010RJZA024)Scientific and Technical Innovation Project of Northwest Normal University(No.nwnu-kjcxgc-03-63)
文摘ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.
基金supported by the Scientific Computing Research Innovation Team of Guangdong Province(no.2021KCXTD052)the Science and Technology Development Fund,Macao SAR(no.0096/2022/A,0151/2022/A)+3 种基金University of Macao(no.MYRG2020-00035-FST,MYRG2022-00076-FST)the Guangdong Key Construction Discipline Research Capacity Enhancement Project(no.2022ZDJS049)Technology Planning Project of Shaoguan(no.210716094530390)the ScienceFoundation of Shaoguan University(no.SZ2020KJ01).
文摘In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.
基金Supported by the National Natural Science Foundation of China(29977014)
文摘Chitosan was prepared with stressing method by blending chitin and solid alkali in a single-screw extruder at given temperature and characterized by potentiometric titration,gel permeation chromatography(GPC),infrared spectrum(IR)and carbon-13 magnetic resonance sperctroscopy(^(13)C NMR).Chitosan with a deacetylation degree(DD)of 76.1%was obtained at a mass ratio 0.2∶1∶1 for H_2 O/chitin/NaOH at 160℃for 12 min.Compared to conventional solution method(usually 1∶10 for chitin/NaOH),the alkali assumption greatly decreased.Molecular weight of chitosan obtained by solid-phase method(S3,M_w1.54×10^(5))was lower than that obtained by suspension method(Y2,M_w3.34×10^(5)).During deacetylation,molecular weight decreased with high reaction temperature and long reaction time but remained same at different initial ratios of NaOH/chitin.It might be concluded that degradation of chitosan was caused by breakout of the main chain of the oxidized chitosan catalyzed by alkali during the deactylation.IR and^(13)C NMR showed that structures of chitosans prepared by solid-phase method were not changed.
基金supported by National Natural Science Foundation of China(11771393,11371320,11632015)Zhejiang Natural Science Foundation(LZ14A010002,LQ18A010008)Scientific Research Fund of Zhejiang Provincial Education Department(FX2016073)
文摘Under the assumption that the nonlinear operator has Lipschitz continuous divided differences for the first order,we obtain an estimate of the radius of the convergence ball for the two-step secant method.Moreover,we also provide an error estimate that matches the convergence order of the two-step secant method.At last,we give an application of the proposed theorem.
基金supported by the National Natural Science Foun-dation of China(Nos.52025028,52332008,52372214,52202273,and U22A20137)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method more easily controls the crystallization rate and is suitable for preparing large-area per-ovskite devices.However,the residual low-conductivity iodide layer in the two-step method can affect carrier transport and device stability,and the different crystallization rates of Sn-and Pb-based per-ovskites may result in poor film quality.Therefore,Sn-Pb mixed perovskites are mainly prepared by a one-step method.Herein,a MAPb_(0.5)Sn_(0.5)I_(3)-based self-powered photodetector without a hole transport layer is fabricated by a two-step method.By adjusting the concentration of the ascorbic acid(AA)addi-tive,the final perovskite film exhibited a pure phase without residues,and the optimal device exhibited a high responsivity(0.276 A W^(-1)),large specific detectivity(2.38×10^(12) Jones),and enhanced stability.This enhancement is mainly attributed to the inhibition of Sn2+oxidation,the control of crystal growth,and the sufficient reaction between organic ammonium salts and bottom halides due to the AA-induced pore structure.
文摘The Adomian decomposition method (ADM) can be used to solve a wide range of problems and usually gets the solution in a series form. In this paper, we propose two-step Adomian Decomposition Method (TSAM) for nonlinear integro-differential equations that will facilitate the calculations. In this modification, compared to the standard Adomian decomposition method, the size of calculations was reduced. This modification also avoids computing Adomian polynomials. Numerical results are given to show the efficiency and performance of this method.
基金Project (2012CB722805) supported by the National Basic Research Program of ChinaProjects (50974083, 51174131) supported by the National Natural Science Foundation of China+1 种基金Project (50774112) supported by the Joint Fund of NSFC and Baosteel, ChinaProject(07QA4021) supported by the Shanghai "Phosphor" Science Foundation, China
文摘The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationship between the diffusion coefficient along the direction of z-axis which is normal to the Mg/Zn interface and temperature was investigated, and the AF's impact on the diffusion constant (D0) and activation energy (Q^*) was studied. Then, two steps were taken to simulate the atomic diffusion process and the formation of new phases: one for acceleration and the other for equilibration. The results show that: the Arrhenius equation works well for the description of Dz with different accelerating factors; the AF has no effect on the diffusion constant Do in the case of no phase transition; and the relationship between Q* and Q conforms to Q^*=Q/A. Then, the new Arrhenius equation for AFHD is successfully constructed as Dz=Doexp[-Q/(ART)]. Meanwhile, the authentic equilibrium conformations at any dynamic moment can only be reproduced by the equilibration simulation of the HD-simulated configurations. Key words: accelerating factor method; Arrhenius equation; two-steps scheme; Mg/Zn interface; hyperdynamic simulation
文摘The paper aims to demonstrate the system of SANYI biogas power generation by two-step method which can produce methane and generate electricity effectively and stably.So it can be stable synchronization meshwork energy source establishment and provide references to develop an effective and stable project of producing methane and generating electricity.
基金supported by the Natural Science Foundation of Hubei Province of China(2008CDB255)the Educational Commission of Hubei Province of China(No.Q20081505)the Key Laboratory for Green Chemical Process of the Ministry of Education of China (No.RGCT200801)
文摘A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of two steps, namely single-crystal nucleation and growth. Prior to the fabrication of the well-faceted, large crystal diamond, an investigation was made into the nucleation and growth of the diamond which were affected by the O2 concentration and substrate temperature. Deposited diamond crystals were characterized by scanning electron microscopy and micro-Raman spectroscopy. The results showed that the conditions of single-crystal nucleation were appropriate when the ratio of H2/CH4/O2 was about 200/7.0/2.0, while the sub- strate temperature Ts of 1000℃ to 1050℃ was the appropriate range for single-crystal diamond growth. Under the optimum parameters, a well-faeeted large crystal diamond was obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.62004129,51472189,22005202)the Shenzhen Science and Technology Innovation Commission(JCYJ20200109105003940)+2 种基金the Research Grants Council of Hong Kong(GRF grant 15221320,CRF C5037-18G,C7018-20G)the Hong Kong Polytechnic University Funds(Sir Sze-yuen Chung Endowed Professorship Fund(8-8480)RISE(Q-CDA5)。
文摘Ionic liquids(ILs)have been widely applied in the one-step fabrication of perovskite with noticeable enhancement in the device performance.However,in-depth mechanism of ionic-liquid-assisted perovskite film formation is not well understood for also important two-step perovskite fabrication method,with better control of crystallization behavior.In this work,we introduced ionic liquid methylammonium formate(MAFa)into organic salt to produce perovskite film via a two-step method.Systematic investigations on the influence of MAFa on the perovskite thin film formation mechanism were performed.Ionic liquid is shown to assist lowering the perovskite formation enthalpy upon the density functional theory(DFT)calculation,leading to an accelerated crystallization process evidenced by in-situ UV-Vis absorption measurement.A gradient up-down distribution of ionic liquid has been confirmed by timeof-flight SIMS.Importantly,besides the surface passivation,we found the HCOO-can diffuse into the perovskite crystals to fill up the halide vacancies,resulting in significant reduction of trap states.Uniform perovskite films with significantly larger grains and less defect density were prepared with the help of MAFa IL,and the corresponding device efficiency over 23%was obtained by two-step process with remarkably improved stability.This research work provides an efficient strategy to tune the morphology and opto-electronic properties of perovskite materials via ionic-liquid-assisted two-step fabrication method,which is beneficial for upscaling and application of perovskite photovoltaics.
文摘An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.
文摘In this note we at first briefly review iterative methods for effectively approaching a root of an unknown multiplicity. We describe a first order, then a second order estimate for the multiplicity index m of the approached root. Next we present a second order, two-step method for iteratively nearing a root of an unknown multiplicity. Subsequently, we introduce a novel chord, or a two- step method, not requiring beforehand knowledge of the multiplicity index m of the sought root, nor requiring higher order derivatives of the equilibrium function, which is quadratically convergent for any , and then reverts to superlinear.
文摘Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.
基金supported by the Mathematics and Physics Foundation of Beijing Polytechnic University and the National Natural Science Foundation of China (Grant No 40536029)
文摘Explicit solutions are derived for some nonlinear physical model equations by using a delicate way of two-step ansatz method.
基金financial support from the National Program for Support of Top-notch Young Professionals
文摘To date, it is still a great challenge for highly efficient perovskite devices to realize the high quality per- ovskite films with high purity, high coverage ratio and good crystallization by two-step scalable solution method. In this study, a series PbI2 films with tunable micro-architecture of Pbl2 crystals are prepared via solution processable crystal engineering. The perovskite film, prepared by optimized pit spacing in gas pumped PbI2 film at 1000 Pa, shows the highest film quality, including no residual Pbl2 phase, compact morphology, and improved photoluminescence intensity. A transformation kinetics shows that the pit spacing strongly influences both the mass transfer and the sequential intercalation reaction between CH3NH31 and PbI2 crystals, which ultimately determines the full reaction state of the perovskite film. The perovskite solar cells assembled by the perovskite film show both high power-conversion efficiency and good reproducibility of photovoltaic performance due to the restrained charge recombination arising from the high quality perovskite film.