High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production meth...High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.展开更多
The challenge of sintering ultrafine-grained refractory metals and alloys to full density is hereby addressed by pressureless two-step sintering in tungsten-rhenium alloy and pure molybdenum. Using properly processed ...The challenge of sintering ultrafine-grained refractory metals and alloys to full density is hereby addressed by pressureless two-step sintering in tungsten-rhenium alloy and pure molybdenum. Using properly processed nano powders(~50 nm average particle size), we are able to sinter W-10Re alloy to 98.4% density below 1200 ℃ while maintaining a fine grain size of 260 nm, and sinter molybdenum to 98.3% density below 1120 ℃ while maintaining a fine grain size of 290 nm. Compared to normal sintering,two-step sintering offers record-fine grain sizes and better microstructural uniformity, which translates to better mechanical properties with higher hardness(6.3 GPa for tungsten-rhenium and 4.0 GPa for molybdenum, both being the highest in all pressurelessly sintered samples of the respective material system)and larger Weibull modulus. Together with our previous demonstration in tungsten, we believe that twostep sintering is a general effective method to produce high-quality fine-grained refractory metals and alloys, and the lessons learned here are transferable to other materials for powder metallurgy.展开更多
New types of refractory materials need to be developed for designing the man-made ledge of the Hall-Heroult cell for aluminum electrolysis, which are currently constructed by frozen ledge.Magnesium aluminate spinel (...New types of refractory materials need to be developed for designing the man-made ledge of the Hall-Heroult cell for aluminum electrolysis, which are currently constructed by frozen ledge.Magnesium aluminate spinel (MAS) as potential candidate materials was prepared by two-step sintering. The densification and grain growth of the MAS wereinvestigatedbytheArchimedes drainage method and scanning electron microscope (SEM). All the specimens were corroded in aNa3AlF6-AlF3-CaF2-Al2O3bath to assess the corrosion resistance. The results show that a MAS material with a high relative density of 99.2% and ahomogeneous microstructure is achieved under two-step sintering conditions. The corrosion mechanisms of MAS inNa3AlF6-AlF3-CaF2-Al2O3 bathare mainly proposed by dissolution of MAS, formation of aluminum oxide, and diffusion of fluorides. The MAS prepared by two-step sintering exhibits good corrosion resistance to theNa3AlF6-AlF3-CaF2-Al2O3bath.展开更多
This study investigated enhancing the wear resistance of Ti6Al4V alloys for medical applications by incorporating Ti C nanoreinforcements using advanced spark plasma sintering(SPS). The addition of up to 2.5wt% Ti C s...This study investigated enhancing the wear resistance of Ti6Al4V alloys for medical applications by incorporating Ti C nanoreinforcements using advanced spark plasma sintering(SPS). The addition of up to 2.5wt% Ti C significantly improved the mechanical properties, including a notable 18.2% increase in hardness(HV 332). Fretting wear tests against 316L stainless steel(SS316L) balls demonstrated a 20wt%–22wt% reduction in wear volume in the Ti6Al4V/Ti C composites compared with the monolithic alloy. Microstructural analysis revealed that Ti C reinforcement controlled the grain orientation and reduced the β-phase content, which contributed to enhanced mechanical properties. The monolithic alloy exhibited a Widmanstätten lamellar microstructure, while increasing the Ti C content modified the wear mechanisms from ploughing and adhesion(0–0.5wt%) to pitting and abrasion(1wt%–2.5wt%). At higher reinforcement levels, the formation of a robust oxide layer through tribo-oxide treatment effectively reduced the wear volume by minimizing the abrasive effects and plastic deformation. This study highlights the potential of SPS-mediated Ti C reinforcement as a transformative approach for improving the performance of Ti6Al4V alloys, paving the way for advanced medical applications.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
A new two-step spark plasma sintering(TSS)process with low-temperature pre-sintering and high-temperature final sintering has been successfully applied to prepare the tungsten-particle(Wp)-reinforced bulk metallic gla...A new two-step spark plasma sintering(TSS)process with low-temperature pre-sintering and high-temperature final sintering has been successfully applied to prepare the tungsten-particle(Wp)-reinforced bulk metallic glass composites(Wp/BMGCs).Compared to normal spark plasma sintering(NS),the densification rate and relative density of Wp/BMGCs can be improved by selecting TSS with appropriate sintering pressure in the low temperature pre-sintering stage.However,the compressive strength and plastic strain of 30%Wp/BMGCs prepared by TSS are both higher than those of the samples prepared by NS.The TSS process can significantly enhance the compressive strength of 30%Wp/BMGCs by 12%and remarkably increase the plastic strain by 50%,while the trend is completely opposite for 50%Wp/BMGCs.Quasi-in situ experiments and finite element simulations reveal that uneven temperature distribution among particles during low-temperature pre-sintering causes local overheating at contact points between particles,accelerating formation of sintering neck between particles and plastic deformation of Wp.When the volume fraction of Wp is low,TSS can improve the interface bonding between particles by increasing the number of sintering necks.This makes the fracture mode of Wp/BMGCs being predominantly transgranular fracture.However,as the volume fraction of Wp increases,the adverse effects of Wp plastic deformation are becoming more and more prominent.The aggregated Wp tends to form a solid"cage structure"that hinders the bonding between particles at the interface;correspondingly,the fracture behavior of Wp/BMGCs is mainly dominated by intergranular fracture.Additionally,reducing the sintering pressure during the low-temperature pre-sintering stage of TSS has been shown to effectively decrease plastic deformation in Wp,resulting in a higher degree of densification and better mechanical properties.展开更多
The miscibility of W in Sn and Cu is extremely poor. Sintering of W-bronze composites to their full density is proved to be difficult. To tackle this problem, the ball milling process of the W-bronze powder mixture pr...The miscibility of W in Sn and Cu is extremely poor. Sintering of W-bronze composites to their full density is proved to be difficult. To tackle this problem, the ball milling process of the W-bronze powder mixture proposed in this study was split into two steps. In the first step, the softness of Sn powder was exploited to modify the surface morphology of W particles. In the second step, Cu was added to the ball milled mixture. To achieve this goal, four 50 wt% W-bronze compact sets of different powder precursors and activator additions were produced. The sintering process was performed at 1150 ℃. The two-step ball milled powder yielded sintered compacts of homogeneous microstructure of fine polygonal W grains dispersed in bronze matrix. They showed the highest hardness and densification levels. The sintered density, microstructure, hardness and densification mechanisms of the sintered compacts were investigated, examined and evaluated using different metallographic, microscopic and measurement facilities.展开更多
As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and com...As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and combustion zone was analyzed in the laboratory.The results showed that the decreased porosity of mixture resulted in the increased bed resistance by 160.56%when the bed depth increased from 600 to 1000 mm.After improving porosity of 1%by adding loosening bars with optimized size and distribution,the bed resistance decreased,and the productivity increased by 5%.The increase in bed depth increased the thickness of the wet zone from 120 to 680 mm and the resistance from 1.56 to 8.83 kPa.By using a three-stage intensive mixer and pre-adding water for granulation,the moisture of mixture was reduced by 0.6%,and the sintering productivity increased by 4%.Besides,the high bed resistance is mainly caused by the increase in the thickness of the combustion zone from 31.9 to 132.7 mm,and the bed resistance increased from 0.70 to 5.62 kPa.The bed resistance of the combustion zone at 900 mm was increased by 90.51%compared to 700 mm.After optimization of the distribution of coke breeze,the thickness of combustion zone at the lower layer decreased from 132.7 to 106.84 mm and permeability improved significantly.展开更多
A key component of future lunar missions is the concept of in-situ resource utilization(ISRU),which involves the use of local resources to support human missions and reduce dependence on Earth-based supplies.This pape...A key component of future lunar missions is the concept of in-situ resource utilization(ISRU),which involves the use of local resources to support human missions and reduce dependence on Earth-based supplies.This paper investigates the thermal processing capability of lunar regolith without the addition of binders,with a focus on large-scale applications for the construction of lunar habitats and infrastructure.The study used a simulant of lunar regolith found on the Schr?dinger Basin in the South Pole region.This regolith simulant consists of20 wt%basalt and 80 wt%anorthosite.Experiments were conducted using a high power CO_(2)laser to sinter and melt the regolith in a 80 mm diameter laser spot to evaluate the effectiveness of direct large area thermal processing.Results indicated that sintering begins at approximately 1180℃and reaches full melt at temperatures above 1360℃.Sintering experiments with this material revealed the formation of dense samples up to 11 mm thick,while melting experiments successfully produced larger samples by overlapping molten layers and additive manufacturing up to 50 mm thick.The energy efficiency of the sintering and melting processes was compared.The melting process was about 10 times more energy efficient than sintering in terms of material consolidation,demonstrating the promising potential of laser melting technologies of anorthosite-rich regolith for the production of structural elements.展开更多
Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiv...Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiveness of sinter quality prediction,an intelligent flare monitoring system for sintering machine tails that combines hybrid neural networks integrating convolutional neural network with long short-term memory(CNN-LSTM)networks was proposed.The system utilized a high-temperature thermal imager for image acquisition at the sintering machine tail and employed a zone-triggered method to accurately capture dynamic feature images under challenging conditions of high-temperature,high dust,and occlusion.The feature images were then segmented through a triple-iteration multi-thresholding approach based on the maximum between-class variance method to minimize detail loss during the segmentation process.Leveraging the advantages of CNN and LSTM networks in capturing temporal and spatial information,a comprehensive model for sinter quality prediction was constructed,with inputs including the proportion of combustion layer,porosity rate,temperature distribution,and image features obtained from the convolutional neural network,and outputs comprising quality indicators such as underburning index,uniformity index,and FeO content of the sinter.The accuracy is notably increased,achieving a 95.8%hit rate within an error margin of±1.0.After the system is applied,the average qualified rate of FeO content increases from 87.24%to 89.99%,representing an improvement of 2.75%.The average monthly solid fuel consumption is reduced from 49.75 to 46.44 kg/t,leading to a 6.65%reduction and underscoring significant energy saving and cost reduction effects.展开更多
Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suita...Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suitable dielectric materials for high-power microwave transmission devices and reliable power transmission.Pure magnesium oxide(MgO),a kind of ceramic dielectric material,possesses great application potential in high-power microwave transmission devices due to its high theoretical dielectric strength,low dielectric constant,and low dielectric loss properties,but its application is limited by high sintering temperature during preparation.This work presented the preparation of a new type of multiphase ceramics based on MgO,which was MgO-1%ZrO_(2)-1%CaCO_(3-x)%MnCO_(3)(MZCM_(x),x=0,0.25,0.50,1.00,1.50,in molar),and their phase structures,morphological features,and dielectric properties were investigated.It was found that inclusion of ZrO_(2) and CaCO_(3) effectively inhibited excessive growth of MgO grains by formation of second phase,while addition of MnCO_(3) promoted the grain boundary diffusion process during the sintering process and reduced activation energy for the grain growth,resulting in a lower ceramic sintering temperature.Excellent performance,including high dielectric strength(Eb=92.3 kV/mm)and quality factor(Q×f=216642 GHz),simultaneously accompanying low dielectric loss(<0.03%),low temperature coefficient of dielectric constant(20.3×10^(–6)℃^(–1),85℃)and resonance frequency(–12.54×10^(–6)℃^(–1)),was achieved in MZCM1.00 ceramics under a relatively low sintering temperature of 1350℃.This work offers an effective solution for selecting dielectric materials for high-power microwave transmission devices.展开更多
1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7]...1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7],that indicate their potential for use in actu-ators,sensors,micropumps,energy harvesters,and solid-state re-frigeration[8-10].Among the alloys,Ni-Mn-Sn-based alloys are environment-friendly and cost-effective[6,7,11],and hence,they have received widespread attention.展开更多
During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control...During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control in sintering production to keep the mass concentration of NO_(x)in sintering flue gas at a low level.Through industrial trials at sintering sites,methods such as correlation analysis,path analysis,and multiple linear regression were applied to analyze the influence of various factors on NO emissions during the sintering process.The results indicate that negative correlations exist between nitrogen monoxide(NO)emissions and negative pressure,permeability index,O_(2) concentration,CO concentration,and flue gas temperature.Conversely,positive correlations exist between NO emissions and dust concentration,water vapor volume fraction,and sintering bed speed.Among these factors,O_(2) concentration and dust concentration are identified as the most significant influencing factors on NO emissions.By analyzing the masses and modes of influence of different factors,the mechanisms of action of each factor were obtained.Specifically,O_(2) concentration,dust concentration,permeability index,CO concentration,and flue gas temperature play a direct dominant role in NO emissions during the sintering process,while water vapor volume fraction,sintering trolley speed,and negative pressure have an indirect effect.A predictive model for NO mass concentration in flue gas was established with an accuracy rate of 91.6%,showing consistent overall trends with actual values.Finally,denitrification strategies for sintering industrial production were proposed,along with prospects for preliminary denitrification of sintering flue gas using fluidized bed conditions in the duct.展开更多
Limestone was pretreated via the mechanical activation method,and burnt lime was partially substituted by the pretreated limestone for better sinter indices and lower sintering costs.With the reduction in the size dis...Limestone was pretreated via the mechanical activation method,and burnt lime was partially substituted by the pretreated limestone for better sinter indices and lower sintering costs.With the reduction in the size distribution of the pretreated limestone,the particle morphology,the activity of the calcined limestone and the fluidity of the liquid phase during sintering are all improved.When the substitution ratio of the pretreated limestone for burnt lime is kept at 50%,the granulation performance and sinter indices in sinter pot tests are both better compared with that of the base case.Much denser interleaved texture in product sinter is formed with the reduction of sinter porosity and improvement of silico-ferrite of calcium and alumina amount.When the particle size of the pretreated limestone is maintained within the optimal range of 0–2 mm,the tumble index,yield and productivity increase by 7.2%,2.6%and 11.2%,respectively,while the solid fuel rate decreases by 8.7%.In the corresponding sinter industry production,the tumble index and output of the product sinter are comparable to those of the base case,while the coke dosage is reduced by 9.0%.Reduction index and reduction degradation index(RDI_(+3.15))are both higher than 74%.The cost of raw materials in sintering process can be greatly reduced.展开更多
A pre-reduction sintering process with flue gas recirculation(PSP_(fsg)-FGR)was developed to mitigate alkalis harm to the blast furnace and reduce the flue gas emission in the whole ironmaking process.The results indi...A pre-reduction sintering process with flue gas recirculation(PSP_(fsg)-FGR)was developed to mitigate alkalis harm to the blast furnace and reduce the flue gas emission in the whole ironmaking process.The results indicated that the pre-reduction sintering process(PSP)can effectively remove 58.02%of K and 30.68%of Na from raw mixtures and improve yield and tumbler index to 74.40%and 68.69%,respectively.Moreover,PSP was conducive to reducing NO_(x) and SO_(2)emissions and simultaneously increasing CO content in flue gas.Circulating CO-containing flue gas to sintering bed effectively recycled CO and further improved K and Na removal ratio to 74.11%and 32.92%,respectively.Microstructural analysis revealed that the pre-reduced sinter mainly consisted of magnetite,wustite and a small quantity of metallic iron,and very few silicate glass phase was also formed.This process can simultaneously realize alkali metal elements removal as well as flue gas emission reduction from the integrated ironmaking process.展开更多
Steel rolling sludge,an oil-containing waste generated during steel production,was difficult to manage.Prolonged storage poses significant environmental and health hazards.Most steel enterprises in China use steel rol...Steel rolling sludge,an oil-containing waste generated during steel production,was difficult to manage.Prolonged storage poses significant environmental and health hazards.Most steel enterprises in China use steel rolling sludge directly as a raw material for sintering.However,its adhesive nature caused poor mixing with other materials,affecting the quality of the sinter.Herein,the incorporation of steel rolling sludge incineration slag into the sintering process was investigated for experimental purposes.The results indicated that adding 1%incinerated steel rolling sludge to the sintering raw material was feasible.At this proportion,both the yield and the tumbler index of the sinter have improved,primarily due to the oxidation reaction of Fe_(3)O_(4)present in the steel rolling sludge incineration slag during the sintering process,which significantly increases the sensible heat of the sinter and enhances the sintering mineralization reaction.Notably,the addition of steel rolling sludge incineration slag reduced dioxin concentrations in the sintering flue gas.Although CO,NO_(x),and SO_(2)emission concentrations slightly increased,the existing flue gas treatment system effectively controlled their emissions.展开更多
In this work, a novel in-situ two-step pore-forming process in vacuum sintering(ITPVS) technique combining low-temperature processing to produce open pores through the interdiffusion among the intrinsic components in ...In this work, a novel in-situ two-step pore-forming process in vacuum sintering(ITPVS) technique combining low-temperature processing to produce open pores through the interdiffusion among the intrinsic components in the base steel, and subsequent high-temperature processing to further improve the porosities by the sublimation of Mn via previously formed open pores, was proposed to produce a lab-scale porous Fe Mn Al steel. For the first time, a high-Mn and high-Al steel with open and overall porosities of ~59.6 vol.% and ~63.7 vol.%(percent in volume, vol.%) was synthesized by isothermal holding of the quaternary elemental Fe/Mn/Al/C powder mixture at 640℃ for 1 h and the subsequent sintering at 1200℃ for 1 h. Elemental Al partly incorporated into/reacted with α-Fe and α-Mn after sintering at640℃ for 1 h, leading to the overall and open porosities promoting by ~26.6 vol.% and ~25.6 vol.%. After sintering at 1200℃, Fe Mn Al steel with increased porosities mainly comprising of austenite and α-Fe obtained. The compression strength and corresponding strain of the 1200℃-sintered porous specimen without crack on the surface was ~75 MPa and ~25%. The ITPVS technique takes advantage of using the intrinsic components like Al, Mn and Fe in steels to produce porous structure. This is beneficial to avoiding the contamination of the Fe Mn Al steel matrix caused by the employment of the foreign pore-forming agents.展开更多
Silica-based ramming mixes are widely used as lining materials in coreless induction furnaces,which serve as the main equipment for iron and steel in foundry industry.The service life of linings made from silica-based...Silica-based ramming mixes are widely used as lining materials in coreless induction furnaces,which serve as the main equipment for iron and steel in foundry industry.The service life of linings made from silica-based ramming mixes depends on the properties of quartzite raw materials.In this paper,quartzites from three regions were selected as raw materials,with boron oxide and boron phosphate as sintering aids.By comparing and testing performance such as the phase composition,permanent linear change,bulk density,apparent porosity,and slag resistance,the effects of raw material characteristics and sintering aids on the performance of the silica-based ramming mixes were investigated.The results showed that boron oxidecontaining ramming mixes prepared from quartzite with a fast phase transition showed lower strength and greater expansion as well as lower slag penetration index.For boron phosphate as a sintering aid,ramming mixes made from quartzites with medium and slow phase transition rates had an approaching slag penetration index comparable to those containing boron oxide,although their strength was lower than the latter.According to the melting requirements of stainless steel,boron phosphate can replace boron oxide as a sintering aid for silica-based ramming mixes.Regarding practical applications for linings of coreless induction furnaces,the selection of quartzite as the raw material for silica-based ramming mixes shall be comprehensively considered from multiple aspects.展开更多
BiCuSeO thermoelectric ceramics were fabricated using self-propagating high-temperature synthesis(SHS)combined with spark plasma sintering(SPS),and their phase compositions,microstructure,electrical properties,and the...BiCuSeO thermoelectric ceramics were fabricated using self-propagating high-temperature synthesis(SHS)combined with spark plasma sintering(SPS),and their phase compositions,microstructure,electrical properties,and thermal properties were systematically characterized and analyzed.The experimental results demonstrate that applying high-pressure condition during the sintering process will effectively restrict grain growth,reduce porosity,and lead to an increase in electrical conductivity.Simultaneously,high pressure sintering conditions reduce grain size and introduce additional grain boundaries and defects,which strengthens phonon scattering,thereby further decreasing both lattice thermal conductivity and total thermal conductivity.As a result,the high-pressure conditions significantly improve the thermoelectric figure of merit(ZT)of BiCuSeO.In brief,the samples sintered at 600℃under 200 MPa achieve a maximum ZT value of 0.64 at approximately 792 K.展开更多
Increasing the sintering rate of powder compact is a critical challenge of powder metallurgical materials,and adjusting component distribution in particles aggregate present significant effect on the microstructure of...Increasing the sintering rate of powder compact is a critical challenge of powder metallurgical materials,and adjusting component distribution in particles aggregate present significant effect on the microstructure of sintered product,especially for multi-phase compact with local heterogeneity.Here,a case study of W–Ni–Co powder compact was adopted to illustrate the novel strategy to enhance the sintering of multi-phase compact with desired microstructure by adjusting the particle configurations.The plasma synthesis route was developed for the first time to independently adjust the configurations of W–Ni–Co nanopowders with core-shell and homogeneous structures,which facilitates to ascertain the sintering response induced exclusively by particle configurations.Comparison on sintering response further indicates that core-shell powder presents greatly promoted sintering than homogeneous one,and full-dense and uniform compact with grain size of 1.37μm was obtained by solid sintering,which is several to dozens of times smaller than that obtained by conventional liquid sintering.Theoretical and experimental Investigation on elemental immigration visualized the distinct mass diffusion behavior of powder compacts,and clarified the mass transport path promoted densification mechanism determined by powder configurations.Importantly,full-coherent phase interface induced superior strength and plasticity in alloy sintered using core-shell powder,which highlights the importance of microstructural regulation on improving the mechanical property that superior than most of previously reported tungsten heavy alloys.In summary,this work paves a new way for fast sintering of multi-phase compacts,and provides intrinsic understandings on densification mechanism of powder compact.展开更多
基金Natural Science Foundation of Shanghai(24ZR1400800)he Natural Science Foundation of China(U23A20685,52073058,91963204)+1 种基金the National Key R&D Program of China(2021YFB3701400)Shanghai Sailing Program(23YF1400200)。
文摘High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.
基金supports by the Natural Science Foundation of China(52074032,51974029,52131307,52071013)and“111”Project(No.B170003).Y.D.and J.L.acknowledge the support by Eni S.p.A.through the MIT Energy Initiative.
文摘The challenge of sintering ultrafine-grained refractory metals and alloys to full density is hereby addressed by pressureless two-step sintering in tungsten-rhenium alloy and pure molybdenum. Using properly processed nano powders(~50 nm average particle size), we are able to sinter W-10Re alloy to 98.4% density below 1200 ℃ while maintaining a fine grain size of 260 nm, and sinter molybdenum to 98.3% density below 1120 ℃ while maintaining a fine grain size of 290 nm. Compared to normal sintering,two-step sintering offers record-fine grain sizes and better microstructural uniformity, which translates to better mechanical properties with higher hardness(6.3 GPa for tungsten-rhenium and 4.0 GPa for molybdenum, both being the highest in all pressurelessly sintered samples of the respective material system)and larger Weibull modulus. Together with our previous demonstration in tungsten, we believe that twostep sintering is a general effective method to produce high-quality fine-grained refractory metals and alloys, and the lessons learned here are transferable to other materials for powder metallurgy.
基金Project(51374240)supported by the National Natural Science Foundation of ChinaProject(2012BAE08B02)supported by the National Science and Technology Pillar Program of China
文摘New types of refractory materials need to be developed for designing the man-made ledge of the Hall-Heroult cell for aluminum electrolysis, which are currently constructed by frozen ledge.Magnesium aluminate spinel (MAS) as potential candidate materials was prepared by two-step sintering. The densification and grain growth of the MAS wereinvestigatedbytheArchimedes drainage method and scanning electron microscope (SEM). All the specimens were corroded in aNa3AlF6-AlF3-CaF2-Al2O3bath to assess the corrosion resistance. The results show that a MAS material with a high relative density of 99.2% and ahomogeneous microstructure is achieved under two-step sintering conditions. The corrosion mechanisms of MAS inNa3AlF6-AlF3-CaF2-Al2O3 bathare mainly proposed by dissolution of MAS, formation of aluminum oxide, and diffusion of fluorides. The MAS prepared by two-step sintering exhibits good corrosion resistance to theNa3AlF6-AlF3-CaF2-Al2O3bath.
文摘This study investigated enhancing the wear resistance of Ti6Al4V alloys for medical applications by incorporating Ti C nanoreinforcements using advanced spark plasma sintering(SPS). The addition of up to 2.5wt% Ti C significantly improved the mechanical properties, including a notable 18.2% increase in hardness(HV 332). Fretting wear tests against 316L stainless steel(SS316L) balls demonstrated a 20wt%–22wt% reduction in wear volume in the Ti6Al4V/Ti C composites compared with the monolithic alloy. Microstructural analysis revealed that Ti C reinforcement controlled the grain orientation and reduced the β-phase content, which contributed to enhanced mechanical properties. The monolithic alloy exhibited a Widmanstätten lamellar microstructure, while increasing the Ti C content modified the wear mechanisms from ploughing and adhesion(0–0.5wt%) to pitting and abrasion(1wt%–2.5wt%). At higher reinforcement levels, the formation of a robust oxide layer through tribo-oxide treatment effectively reduced the wear volume by minimizing the abrasive effects and plastic deformation. This study highlights the potential of SPS-mediated Ti C reinforcement as a transformative approach for improving the performance of Ti6Al4V alloys, paving the way for advanced medical applications.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金financially supported by the National Natural Science Foundation of China(Nos.52371154,52090043,52175371 and 52271147)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012158)+1 种基金the Knowledge Innovation Program of Wuhan-Basic Researchthe Fundamental Research Funds for the Central Universities(No.2021GCRC003)。
文摘A new two-step spark plasma sintering(TSS)process with low-temperature pre-sintering and high-temperature final sintering has been successfully applied to prepare the tungsten-particle(Wp)-reinforced bulk metallic glass composites(Wp/BMGCs).Compared to normal spark plasma sintering(NS),the densification rate and relative density of Wp/BMGCs can be improved by selecting TSS with appropriate sintering pressure in the low temperature pre-sintering stage.However,the compressive strength and plastic strain of 30%Wp/BMGCs prepared by TSS are both higher than those of the samples prepared by NS.The TSS process can significantly enhance the compressive strength of 30%Wp/BMGCs by 12%and remarkably increase the plastic strain by 50%,while the trend is completely opposite for 50%Wp/BMGCs.Quasi-in situ experiments and finite element simulations reveal that uneven temperature distribution among particles during low-temperature pre-sintering causes local overheating at contact points between particles,accelerating formation of sintering neck between particles and plastic deformation of Wp.When the volume fraction of Wp is low,TSS can improve the interface bonding between particles by increasing the number of sintering necks.This makes the fracture mode of Wp/BMGCs being predominantly transgranular fracture.However,as the volume fraction of Wp increases,the adverse effects of Wp plastic deformation are becoming more and more prominent.The aggregated Wp tends to form a solid"cage structure"that hinders the bonding between particles at the interface;correspondingly,the fracture behavior of Wp/BMGCs is mainly dominated by intergranular fracture.Additionally,reducing the sintering pressure during the low-temperature pre-sintering stage of TSS has been shown to effectively decrease plastic deformation in Wp,resulting in a higher degree of densification and better mechanical properties.
基金supported by the Tin Technology UK (ITR)and Malaysian Smelting Corporations under Grant No. 650079
文摘The miscibility of W in Sn and Cu is extremely poor. Sintering of W-bronze composites to their full density is proved to be difficult. To tackle this problem, the ball milling process of the W-bronze powder mixture proposed in this study was split into two steps. In the first step, the softness of Sn powder was exploited to modify the surface morphology of W particles. In the second step, Cu was added to the ball milled mixture. To achieve this goal, four 50 wt% W-bronze compact sets of different powder precursors and activator additions were produced. The sintering process was performed at 1150 ℃. The two-step ball milled powder yielded sintered compacts of homogeneous microstructure of fine polygonal W grains dispersed in bronze matrix. They showed the highest hardness and densification levels. The sintered density, microstructure, hardness and densification mechanisms of the sintered compacts were investigated, examined and evaluated using different metallographic, microscopic and measurement facilities.
基金supported by the Basic Science Center Project for the National Natural Science Foundation of China(No.72088101)the S&T Program of Hebei(No.23564101D).
文摘As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and combustion zone was analyzed in the laboratory.The results showed that the decreased porosity of mixture resulted in the increased bed resistance by 160.56%when the bed depth increased from 600 to 1000 mm.After improving porosity of 1%by adding loosening bars with optimized size and distribution,the bed resistance decreased,and the productivity increased by 5%.The increase in bed depth increased the thickness of the wet zone from 120 to 680 mm and the resistance from 1.56 to 8.83 kPa.By using a three-stage intensive mixer and pre-adding water for granulation,the moisture of mixture was reduced by 0.6%,and the sintering productivity increased by 4%.Besides,the high bed resistance is mainly caused by the increase in the thickness of the combustion zone from 31.9 to 132.7 mm,and the bed resistance increased from 0.70 to 5.62 kPa.The bed resistance of the combustion zone at 900 mm was increased by 90.51%compared to 700 mm.After optimization of the distribution of coke breeze,the thickness of combustion zone at the lower layer decreased from 132.7 to 106.84 mm and permeability improved significantly.
文摘A key component of future lunar missions is the concept of in-situ resource utilization(ISRU),which involves the use of local resources to support human missions and reduce dependence on Earth-based supplies.This paper investigates the thermal processing capability of lunar regolith without the addition of binders,with a focus on large-scale applications for the construction of lunar habitats and infrastructure.The study used a simulant of lunar regolith found on the Schr?dinger Basin in the South Pole region.This regolith simulant consists of20 wt%basalt and 80 wt%anorthosite.Experiments were conducted using a high power CO_(2)laser to sinter and melt the regolith in a 80 mm diameter laser spot to evaluate the effectiveness of direct large area thermal processing.Results indicated that sintering begins at approximately 1180℃and reaches full melt at temperatures above 1360℃.Sintering experiments with this material revealed the formation of dense samples up to 11 mm thick,while melting experiments successfully produced larger samples by overlapping molten layers and additive manufacturing up to 50 mm thick.The energy efficiency of the sintering and melting processes was compared.The melting process was about 10 times more energy efficient than sintering in terms of material consolidation,demonstrating the promising potential of laser melting technologies of anorthosite-rich regolith for the production of structural elements.
基金founded by the Open Project Program of Anhui Province Key Laboratory of Metallurgical Engineering and Resources Recycling(Anhui University of Technology)(No.SKF21-06)Research Fund for Young Teachers of Anhui University of Technology in 2020(No.QZ202001).
文摘Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiveness of sinter quality prediction,an intelligent flare monitoring system for sintering machine tails that combines hybrid neural networks integrating convolutional neural network with long short-term memory(CNN-LSTM)networks was proposed.The system utilized a high-temperature thermal imager for image acquisition at the sintering machine tail and employed a zone-triggered method to accurately capture dynamic feature images under challenging conditions of high-temperature,high dust,and occlusion.The feature images were then segmented through a triple-iteration multi-thresholding approach based on the maximum between-class variance method to minimize detail loss during the segmentation process.Leveraging the advantages of CNN and LSTM networks in capturing temporal and spatial information,a comprehensive model for sinter quality prediction was constructed,with inputs including the proportion of combustion layer,porosity rate,temperature distribution,and image features obtained from the convolutional neural network,and outputs comprising quality indicators such as underburning index,uniformity index,and FeO content of the sinter.The accuracy is notably increased,achieving a 95.8%hit rate within an error margin of±1.0.After the system is applied,the average qualified rate of FeO content increases from 87.24%to 89.99%,representing an improvement of 2.75%.The average monthly solid fuel consumption is reduced from 49.75 to 46.44 kg/t,leading to a 6.65%reduction and underscoring significant energy saving and cost reduction effects.
基金Student Training Program for Innovation and Entrepreneurship of Hangzhou Institute for Advanced Study,UCAS(CXCY20230305)Chinese Academy of Sciences Key Project(ZDRW-CN-2021-3-1-18)。
文摘Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suitable dielectric materials for high-power microwave transmission devices and reliable power transmission.Pure magnesium oxide(MgO),a kind of ceramic dielectric material,possesses great application potential in high-power microwave transmission devices due to its high theoretical dielectric strength,low dielectric constant,and low dielectric loss properties,but its application is limited by high sintering temperature during preparation.This work presented the preparation of a new type of multiphase ceramics based on MgO,which was MgO-1%ZrO_(2)-1%CaCO_(3-x)%MnCO_(3)(MZCM_(x),x=0,0.25,0.50,1.00,1.50,in molar),and their phase structures,morphological features,and dielectric properties were investigated.It was found that inclusion of ZrO_(2) and CaCO_(3) effectively inhibited excessive growth of MgO grains by formation of second phase,while addition of MnCO_(3) promoted the grain boundary diffusion process during the sintering process and reduced activation energy for the grain growth,resulting in a lower ceramic sintering temperature.Excellent performance,including high dielectric strength(Eb=92.3 kV/mm)and quality factor(Q×f=216642 GHz),simultaneously accompanying low dielectric loss(<0.03%),low temperature coefficient of dielectric constant(20.3×10^(–6)℃^(–1),85℃)and resonance frequency(–12.54×10^(–6)℃^(–1)),was achieved in MZCM1.00 ceramics under a relatively low sintering temperature of 1350℃.This work offers an effective solution for selecting dielectric materials for high-power microwave transmission devices.
基金supported by the National Key R&D Pro-gram of China(No.2022YFB3805701)National Natural Science Foundation of China(NSFC)(No.52371182,51701052,52192592,52192593)+1 种基金Young Elite Scientists Sponsorship Program by CAST(No.2019QNRC001)the Heilongjiang Touyan Innovation Team Program.
文摘1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7],that indicate their potential for use in actu-ators,sensors,micropumps,energy harvesters,and solid-state re-frigeration[8-10].Among the alloys,Ni-Mn-Sn-based alloys are environment-friendly and cost-effective[6,7,11],and hence,they have received widespread attention.
基金supported by the National Natural Science Foundation of China(No.51974131)Hebei Outstanding Youth Fund Project(No.E2020209082),Tangshan Key R&D Program project(No.22150232J)Sixth Division Wujiaqu City Science and Technology Plan Project(2410).
文摘During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control in sintering production to keep the mass concentration of NO_(x)in sintering flue gas at a low level.Through industrial trials at sintering sites,methods such as correlation analysis,path analysis,and multiple linear regression were applied to analyze the influence of various factors on NO emissions during the sintering process.The results indicate that negative correlations exist between nitrogen monoxide(NO)emissions and negative pressure,permeability index,O_(2) concentration,CO concentration,and flue gas temperature.Conversely,positive correlations exist between NO emissions and dust concentration,water vapor volume fraction,and sintering bed speed.Among these factors,O_(2) concentration and dust concentration are identified as the most significant influencing factors on NO emissions.By analyzing the masses and modes of influence of different factors,the mechanisms of action of each factor were obtained.Specifically,O_(2) concentration,dust concentration,permeability index,CO concentration,and flue gas temperature play a direct dominant role in NO emissions during the sintering process,while water vapor volume fraction,sintering trolley speed,and negative pressure have an indirect effect.A predictive model for NO mass concentration in flue gas was established with an accuracy rate of 91.6%,showing consistent overall trends with actual values.Finally,denitrification strategies for sintering industrial production were proposed,along with prospects for preliminary denitrification of sintering flue gas using fluidized bed conditions in the duct.
基金supported by Natural Science Foundation of Chongqing(No.CSTB2023NSCQ-BHX0166)Postdoctoral Science Foundation of China(No.2024T171095)Fundamental Research Funds for the Central Universities(No.2024CDJXY003).
文摘Limestone was pretreated via the mechanical activation method,and burnt lime was partially substituted by the pretreated limestone for better sinter indices and lower sintering costs.With the reduction in the size distribution of the pretreated limestone,the particle morphology,the activity of the calcined limestone and the fluidity of the liquid phase during sintering are all improved.When the substitution ratio of the pretreated limestone for burnt lime is kept at 50%,the granulation performance and sinter indices in sinter pot tests are both better compared with that of the base case.Much denser interleaved texture in product sinter is formed with the reduction of sinter porosity and improvement of silico-ferrite of calcium and alumina amount.When the particle size of the pretreated limestone is maintained within the optimal range of 0–2 mm,the tumble index,yield and productivity increase by 7.2%,2.6%and 11.2%,respectively,while the solid fuel rate decreases by 8.7%.In the corresponding sinter industry production,the tumble index and output of the product sinter are comparable to those of the base case,while the coke dosage is reduced by 9.0%.Reduction index and reduction degradation index(RDI_(+3.15))are both higher than 74%.The cost of raw materials in sintering process can be greatly reduced.
基金Project(52274290)supported by the National Natural Science Foundation of ChinaProject(72088101)supported by the Basic Science Center Project for National Natural Science Foundation of China。
文摘A pre-reduction sintering process with flue gas recirculation(PSP_(fsg)-FGR)was developed to mitigate alkalis harm to the blast furnace and reduce the flue gas emission in the whole ironmaking process.The results indicated that the pre-reduction sintering process(PSP)can effectively remove 58.02%of K and 30.68%of Na from raw mixtures and improve yield and tumbler index to 74.40%and 68.69%,respectively.Moreover,PSP was conducive to reducing NO_(x) and SO_(2)emissions and simultaneously increasing CO content in flue gas.Circulating CO-containing flue gas to sintering bed effectively recycled CO and further improved K and Na removal ratio to 74.11%and 32.92%,respectively.Microstructural analysis revealed that the pre-reduced sinter mainly consisted of magnetite,wustite and a small quantity of metallic iron,and very few silicate glass phase was also formed.This process can simultaneously realize alkali metal elements removal as well as flue gas emission reduction from the integrated ironmaking process.
基金supported by the National Natural Science Foundation of China(52204331)Natural Science Foundation of Anhui Province Youth Project(2208085QE145)the Open Project Program of Key Laboratory of Metallurgical Emission Reduction&Resources Recycling(Anhui University of Technology),Ministry of Education(JKF20-03).
文摘Steel rolling sludge,an oil-containing waste generated during steel production,was difficult to manage.Prolonged storage poses significant environmental and health hazards.Most steel enterprises in China use steel rolling sludge directly as a raw material for sintering.However,its adhesive nature caused poor mixing with other materials,affecting the quality of the sinter.Herein,the incorporation of steel rolling sludge incineration slag into the sintering process was investigated for experimental purposes.The results indicated that adding 1%incinerated steel rolling sludge to the sintering raw material was feasible.At this proportion,both the yield and the tumbler index of the sinter have improved,primarily due to the oxidation reaction of Fe_(3)O_(4)present in the steel rolling sludge incineration slag during the sintering process,which significantly increases the sensible heat of the sinter and enhances the sintering mineralization reaction.Notably,the addition of steel rolling sludge incineration slag reduced dioxin concentrations in the sintering flue gas.Although CO,NO_(x),and SO_(2)emission concentrations slightly increased,the existing flue gas treatment system effectively controlled their emissions.
基金supported financially by the National Natural Science Foundation of China(Nos.51804239 and 51972252)the National Fundamental Research Funds for the Central Universities(WUT:2019IVB016)‘111 Project’of China(No.B17034).
文摘In this work, a novel in-situ two-step pore-forming process in vacuum sintering(ITPVS) technique combining low-temperature processing to produce open pores through the interdiffusion among the intrinsic components in the base steel, and subsequent high-temperature processing to further improve the porosities by the sublimation of Mn via previously formed open pores, was proposed to produce a lab-scale porous Fe Mn Al steel. For the first time, a high-Mn and high-Al steel with open and overall porosities of ~59.6 vol.% and ~63.7 vol.%(percent in volume, vol.%) was synthesized by isothermal holding of the quaternary elemental Fe/Mn/Al/C powder mixture at 640℃ for 1 h and the subsequent sintering at 1200℃ for 1 h. Elemental Al partly incorporated into/reacted with α-Fe and α-Mn after sintering at640℃ for 1 h, leading to the overall and open porosities promoting by ~26.6 vol.% and ~25.6 vol.%. After sintering at 1200℃, Fe Mn Al steel with increased porosities mainly comprising of austenite and α-Fe obtained. The compression strength and corresponding strain of the 1200℃-sintered porous specimen without crack on the surface was ~75 MPa and ~25%. The ITPVS technique takes advantage of using the intrinsic components like Al, Mn and Fe in steels to produce porous structure. This is beneficial to avoiding the contamination of the Fe Mn Al steel matrix caused by the employment of the foreign pore-forming agents.
基金grateful to Hubei Province Science and Technology Innovation Talent Plan,and Science and Technology Service Talent Special Project(2023DJC124)for the support on this work.
文摘Silica-based ramming mixes are widely used as lining materials in coreless induction furnaces,which serve as the main equipment for iron and steel in foundry industry.The service life of linings made from silica-based ramming mixes depends on the properties of quartzite raw materials.In this paper,quartzites from three regions were selected as raw materials,with boron oxide and boron phosphate as sintering aids.By comparing and testing performance such as the phase composition,permanent linear change,bulk density,apparent porosity,and slag resistance,the effects of raw material characteristics and sintering aids on the performance of the silica-based ramming mixes were investigated.The results showed that boron oxidecontaining ramming mixes prepared from quartzite with a fast phase transition showed lower strength and greater expansion as well as lower slag penetration index.For boron phosphate as a sintering aid,ramming mixes made from quartzites with medium and slow phase transition rates had an approaching slag penetration index comparable to those containing boron oxide,although their strength was lower than the latter.According to the melting requirements of stainless steel,boron phosphate can replace boron oxide as a sintering aid for silica-based ramming mixes.Regarding practical applications for linings of coreless induction furnaces,the selection of quartzite as the raw material for silica-based ramming mixes shall be comprehensively considered from multiple aspects.
基金Funded by the National Natural Science Foundation of China(Nos.52322207 and 52202289)the National Key Research and Development Plan of China(No.2021YFB3701400)+2 种基金the Independent Innovation Projects of the Hubei Longzhong Laboratory(No.2022ZZ-11)Funded by the National Natural Science Foundation of China(Nos.52322207 and 52202289)the National Key Research and Development Plan of China(No.2021YFB3701400)the Independent Innovation Projects of the Hubei Longzhong Laboratory(No.2022ZZ-11)。
文摘BiCuSeO thermoelectric ceramics were fabricated using self-propagating high-temperature synthesis(SHS)combined with spark plasma sintering(SPS),and their phase compositions,microstructure,electrical properties,and thermal properties were systematically characterized and analyzed.The experimental results demonstrate that applying high-pressure condition during the sintering process will effectively restrict grain growth,reduce porosity,and lead to an increase in electrical conductivity.Simultaneously,high pressure sintering conditions reduce grain size and introduce additional grain boundaries and defects,which strengthens phonon scattering,thereby further decreasing both lattice thermal conductivity and total thermal conductivity.As a result,the high-pressure conditions significantly improve the thermoelectric figure of merit(ZT)of BiCuSeO.In brief,the samples sintered at 600℃under 200 MPa achieve a maximum ZT value of 0.64 at approximately 792 K.
基金supported by the National Natural Science Foundation of China(No.52130407,52174342,52441408)Beijing Natural Science Foundation(No.2232044,IS23050).
文摘Increasing the sintering rate of powder compact is a critical challenge of powder metallurgical materials,and adjusting component distribution in particles aggregate present significant effect on the microstructure of sintered product,especially for multi-phase compact with local heterogeneity.Here,a case study of W–Ni–Co powder compact was adopted to illustrate the novel strategy to enhance the sintering of multi-phase compact with desired microstructure by adjusting the particle configurations.The plasma synthesis route was developed for the first time to independently adjust the configurations of W–Ni–Co nanopowders with core-shell and homogeneous structures,which facilitates to ascertain the sintering response induced exclusively by particle configurations.Comparison on sintering response further indicates that core-shell powder presents greatly promoted sintering than homogeneous one,and full-dense and uniform compact with grain size of 1.37μm was obtained by solid sintering,which is several to dozens of times smaller than that obtained by conventional liquid sintering.Theoretical and experimental Investigation on elemental immigration visualized the distinct mass diffusion behavior of powder compacts,and clarified the mass transport path promoted densification mechanism determined by powder configurations.Importantly,full-coherent phase interface induced superior strength and plasticity in alloy sintered using core-shell powder,which highlights the importance of microstructural regulation on improving the mechanical property that superior than most of previously reported tungsten heavy alloys.In summary,this work paves a new way for fast sintering of multi-phase compacts,and provides intrinsic understandings on densification mechanism of powder compact.