The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by im...The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by immersion in an aqueous environment to transform it into C-S-H.This two-step nucleation approach results in C-S-H with a specific surface area of 497.2 m^(2)/g,achieved by preventing C-S-H foil overlapping and refining its pore structure.When impregnated with paraffin,the novel C-S-H/paraffin composite exhibits superior thermal properties,such as a higher potential heat value of 148.3 J/g and an encapsulation efficiency of 81.6%,outperforming conventional C-S-H.Moreover,the composite material demonstrates excellent cyclic performance,indicating its potential for building thermal storage compared to other paraffin-based composites.Compared with the conventional method,this simple technology,which only adds conversion and centrifugation steps,does not negatively impact preparation costs,the environment,and resource consumption.This study provides valuable theoretical insights for designing thermal storage concrete materials and advancing building heat management.展开更多
It is challenging to assess the mechanism responsible for the nucleation of inclusions in metals at high temperatures.The present work therefore systematically investigates the nucleation of cerium oxide inclusions ac...It is challenging to assess the mechanism responsible for the nucleation of inclusions in metals at high temperatures.The present work therefore systematically investigates the nucleation of cerium oxide inclusions according to classical nucleation theory and a two-step nucleation mechanism.The nucleation rates and nucleation radii of these inclusions are obtained,and the results demonstrate a considerable difference between theoretical and experimental values.On the basis of a two-step nucleation mechanism,(CeO_(2))_(n) and(Ce_(2)O_(3))_(n)(n=1-6)clusters were constructed and the thermodynamic properties of both these clusters and of cerium oxide nanoparticles were analyzed.In addition,the entropies and heat capacity changes of cerium oxides were determined using first principles calculations and are found to be consistent with literature data.The present data indicate that the cerium oxide inclusion nucleation pathway can be summarized as[Ce]+[O]→(CeO_(2))n/(Ce_(2)O_(3))_(n)→(Ce_(2)O_(3))_(n)→(Ce_(2)O_(3))_(2)→core(Ce_(2)O_(3)crystal)-shell((Ce_(2)O_(3))_(2) cluster)nanoparticles→(Ce_(2)O_(3))bulk.展开更多
It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the h...It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the heterogeneous nucleation of twinned Al grains on twin-structured TiC nucleants and the preferred growth of twinned dendrites by laser surface remelting of bulk metals. The solidification structure at the surface shows a mixture of lamellar twinned dendrites with ultra-fine twin boundary spacing (∼2 µm), isolated twinned dendrites, and regular dendrites. EBSD analysis and finite element method (FEM) simulations have been used to understand the competitive growth between twinned and regular dendrites, and the solidification conditions for the preferred growth of twinned dendrites during laser remelting and subsequent rapid solidification are established. It is shown that the reduction in the ratio of temperature gradient G to solidification rate V promotes the formation of lamellar twinned dendrites. The primary trunk spacing of lamellar twinned dendrites is refined by the high thermal gradient and solidification rate. The present work paves a new way to generate high-density growth twins in additive-manufactured Al alloys.展开更多
The unique structure and exceptional properties of two-dimensional(2D)materials offer significant potential for transformative advancements in semiconductor industry.Similar to the reliance on wafer-scale single-cryst...The unique structure and exceptional properties of two-dimensional(2D)materials offer significant potential for transformative advancements in semiconductor industry.Similar to the reliance on wafer-scale single-crystal ingots for silicon-based chips,practical applications of 2D materials at the chip level need large-scale,high-quality production of 2D single crystals.Over the past two decades,the size of 2D single-crystals has been improved to wafer or meter scale,where the nucleation control during the growth process is particularly important.Therefore,it is essential to conduct a comprehensive review of nucleation control to gain fundamental insights into the growth of 2D single-crystal materials.This review mainly focuses on two aspects:controlling nucleation density to enable the growth from a single nucleus,and controlling nucleation position to achieve the unidirectionally aligned islands and subsequent seamless stitching.Finally,we provide an overview and forecast of the strategic pathways for emerging 2D materials.展开更多
Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal defo...Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal deformation of an ingot without homogenization treatment aiming at exploring a new efficient strategy of ingot cogging for superalloys.The as-cast samples were deformed at the sub-solvus temperature,and the DRX evolution from dendritic arms(DAs)to inter-dendritic regions(IDRs)was discussed based on the observation of the fishnet-like DRX microstructures and the gradient of DRX grain size at IDRs.The difference in the precipitates at DAs and IDRs played an essential role during the deformation and DRX process,which finally resulted in very different microstructures in the two areas.A selective straininduced grain boundary bulging(SIGBB)mechanism was found to function well and dominate the DRX nucleation at DAs.The grain boundary was able to migrate and bulge to nucleate on the condition that the boundary was located at DAs and had a great difference in dislocation density between its opposite sides at the same time.As for DRX nucleation at IDRs,the particle-stimulated nucleation(PSN)mechanism played a leading role,and the progressive subgrain rotation(PSR)and geometric DRX were two important supplementary mechanisms.The dislocation accumulation around the coarse precipitates at IDR resulted in progressive orientation rotation,which would generate DRX nuclei once the maximum misorientation there was sufficient to form a high-angle boundary with the matrix.The PSR or geometric DRX functioned at the severely elongated IDRs at the later stage of deformation,depending on the thickness of the elongated IDRs.The uniform microstructure was obtained by the deformation without homogenization and the subsequent annealing treatment.The smaller strain,the lower annealing temperature,and the much shorter soaking time requested in the above process lead to a smaller risk of cracking and a lower consumption of energy during the ingot-cogging process.展开更多
Bubble nucleation plays a crucial role in boiling heat transfer and other applications.Traditional experiments struggle to capture its microscopic mechanisms,making molecular dynamics simulations a powerful tool for s...Bubble nucleation plays a crucial role in boiling heat transfer and other applications.Traditional experiments struggle to capture its microscopic mechanisms,making molecular dynamics simulations a powerful tool for such studies.This work uses molecular dynamics simulations to investigate bubble nucleation of water on copper surfaces with sinusoidal groove roughness under varying heat flux and surface wettability.Results show that at the same wettability,higher heat flux leads to higher surface temperatures after the same heating time,promoting bubble nucleation,growth,and departure.Moreover,under constant heat flux,stronger surface hydrophilicity enhances heat transfer from the solid to the liquid,further accelerating the nucleation.This study provides valuable insights into the mechanism of bubble nucleation and offers theoretical guidance for enhancing heat transfer.展开更多
Earthquakes are caused by the rapid slip along seismogenic faults.Whether large or small,there is inevitably a certain nucleation process involved before the dynamic rupture.At the same time,significant foreshock acti...Earthquakes are caused by the rapid slip along seismogenic faults.Whether large or small,there is inevitably a certain nucleation process involved before the dynamic rupture.At the same time,significant foreshock activity has been observed before some but not all large earthquakes.Understanding the nucleation process and foreshocks of earthquakes,especially large damaging ones,is crucial for accurate earthquake prediction and seismic hazard mitigation.The physical mechanism of earthquake nucleation and foreshock generation is still in debate.While the earthquake nucleation process is present in laboratory experiments and numerical simulations,it is difficult to observe such a process directly in the field.In addition,it is currently impossible to effectively distinguish foreshocks from ordinary earthquake sequences.In this article,we first summarize foreshock observations in the last decades and attempt to classify them into different types based on their temporal behaviors.Next,we present different mechanisms for earthquake nucleation and foreshocks that have been proposed so far.These physical models can be largely grouped into the following three categories:elastic stress triggering,aseismic slip,and fluid flows.We also review several recent studies of foreshock sequences before moderate to large earthquakes around the world,focusing on how different results/conclusions can be made by different datasets/methods.Finally,we offer some suggestions on how to move forward on the research topic of earthquake nucleation and foreshock mechanisms and their governing factors.展开更多
The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error do...The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error does not affect the conclusions of the study,and we apologize for any confusion it may have caused.展开更多
Lithium metal is a compelling choice as an anode material for high-energy-density batteries,attributed to its elevated theoretical specific energy and low redox potential.Nevertheless,challenges arise due to its susce...Lithium metal is a compelling choice as an anode material for high-energy-density batteries,attributed to its elevated theoretical specific energy and low redox potential.Nevertheless,challenges arise due to its susceptibility to high-volume changes and the tendency for dendritic development during cycling,leading to restricted cycle life and diminished Coulombic efficiency(CE).Here,we innovatively engineered a kind of porous biocarbon to serve as the framework for a lithium metal anode,which boasts a heightened specific surface area and uniformly dispersed ZnO active sites,directly derived from metasequoia cambium.The porous structure efficiently mitigates local current density and alleviates the volume expansion of lithium.Also,incorporating the ZnO lithiophilic site notably reduces the nucleation overpotential to a mere 16 mV,facilitating the deposition of lithium in a compact form.As a result,this innovative material ensures an impressive CE of 98.5%for lithium plating/stripping over 500 cycles,a remarkable cycle life exceeding 1200 h in a Li symmetrical cell,and more than 82%capacity retention ratio after an astonishing 690 cycles in full cells.In all,such a rationally designed Li composite anode effectively mitigates volume change,enhances lithophilicity,and reduces local current density,thereby inhibiting dendrite formation.The preparation of a highperformance lithium anode frame proves the feasibility of using biocarbon in a lithium anode frame.展开更多
Stability hinders further development of all-inorganic CsPb X_(3)(X=Cl,Br,I)quantum dots(QDs)although they exhibit promising prospects in optoelectronic applications.Coating perovskite quantum dots(PQDs)with a glass n...Stability hinders further development of all-inorganic CsPb X_(3)(X=Cl,Br,I)quantum dots(QDs)although they exhibit promising prospects in optoelectronic applications.Coating perovskite quantum dots(PQDs)with a glass network to form QD glass can significantly improve their stability.However,the dense glass network degrades their luminescent performance.In this work,the crystallization behavior of PQDs in glass and better luminescence properties are prompted by introducing titanium dioxide into borosilicate glass.The luminescence intensity of TiO_(2)-doped CsPbBr_(3)QD glass is increased by 1.6 times and the PLQY is increased from 49.8%to 79%compared to the undoped glass.Evidence proves that the improved prop-erties are attributed to the enhanced nucleation effect of titanium dioxide during the annealing process.Benefiting from the densification of the glass network caused by titanium dioxide doping,the stability of the PQD glass is further improved.LED devices with an ultra-wide color gamut that fully covers the NTSC1953 standard and achieves 128.6%of the NTSC1953 standard as well as 91.1%of the Rec.2020 stan-dard were fabricated by coupling PQD glass powder,demonstrating promising commercial applications of PQD glass in optoelectronic displays.展开更多
This paper investigates the temperature and loading rate dependencies of the critical stress intensity fac-tor(KIC)for dislocation nucleation at crack tips.We develop a new KIC formula with a generalized form by incor...This paper investigates the temperature and loading rate dependencies of the critical stress intensity fac-tor(KIC)for dislocation nucleation at crack tips.We develop a new KIC formula with a generalized form by incorporating the atomistic reaction pathway analysis into Transition State Theory(TST),which cap-tures the KIC of the first dislocation nucleation event at crack tips and its sensitivity to temperature and loading rates.We use this formula and atomistic modeling information to specifically calculate the KIC for quasi-two-dimensional crack tips located at various slant twin boundaries in nano-twinned TiAl al-loys across a wide range of temperatures and strain rates.Our findings reveal that twinning dislocation nucleation at the crack tip dominates crack propagation when twin boundaries(TBs)are tilted at 15.79°and 29.5°.Conversely,when TBs tilt at 45.29°,54.74°,and 70.53°,dislocation slip becomes the preferred mode.Additionally,at TB tilts of 29.5°and 70.53°,at higher temperatures above 800 K and typical exper-imental loading rates,both dislocation nucleation modes can be activated with nearly equal probability.This observation is particularly significant as it highlights scenarios that molecular dynamics simulations,due to their time scale limitations,cannot adequately explore.This insight underscores the importance of analyzing temperature and loading rate dependencies of the KIC to fully understand the competing mechanisms of dislocation nucleation and their impact on material behavior.展开更多
Silicon(Si)is an inevitable impurity element in the AZ31 alloy.In this study,the Si impurity was detected mainly as fine Mg_(2)Si particles dispersed widely within the central region of the Mg_(17)Al_(12) phase.During...Silicon(Si)is an inevitable impurity element in the AZ31 alloy.In this study,the Si impurity was detected mainly as fine Mg_(2)Si particles dispersed widely within the central region of the Mg_(17)Al_(12) phase.During the solidification process,the Mg_(2)Si particle precipitates at about 565℃,before the Mg_(17)Al_(12) phase of 186℃,potentially acting as the heterogeneous nucleation core for the Mg_(17)Al_(12) phase.The orientation relationship between Mg_(2)Si and Mg_(17)Al_(12) was investigated using the Edge-to-Edge matching model(E2EM)calculations,which showed a misfit of only 0.1%.This low misfit suggests that Mg_(2)Si can serve as a heterogeneous nucleation site for Mg_(17)Al_(12).The surface and interface structures of Mg_(2)Si(220)and Mg_(17)Al_(12)(332)were constructed,and then investigated through the first-principles calculation.The theoretical results indicate that Mg and Al are easily adsorbed on the surface of Mg_(2)Si,with Al showing higher adsorption energy than Mg.Furthermore,the interface between Mg_(2)Si and Mg_(17)Al_(12) exhibits favorable thermodynamic stability.Combined with experiments and theoretical calculations,it is confirmed that the Mg_(2)Si particles,formed due to the Si impurity,provide effective heterogeneous nucleation sites for the Mg_(17)Al_(12) phase.展开更多
Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microsco...Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microscopy. DSC results were used to calculate the activation energy and nucleation work of primaryα(Al) phase. The results show that the values of activation energy and nucleation work are decreased and the nucleation frequency is increased with the additions of Ce and Sr to the alloys. Moreover, the grain size of dendriticα(Al) phase is well refined, and the nucleation temperatures of primaryα(Al) dendrites are decreased with the additions of Ce and Sr. The effects of elements Ce and Sr additions on kinetic nucleation of primary α(Al) phases were also discussed in hypoeutectic Al-7%Si-Mg cast alloy.展开更多
The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing ...The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing the eutectic cells and analyzing the crystallographic orientation,it was found that both the eutectic Si and Al phases in an eutectic cell were not single crystal,representing an eutectic cell consisting of small 'grains'.It is also suggested that the eutectic nucleation mode can not be determined based on the crystallographic orientation between eutectic Al phases and the neighboring primary dendrite Al phases.However,the evolution of primary dendrite Al phases affects remarkably the following nucleation and growth of eutectic cell.The coarse flake-fine fibrous transition of eutectic Si morphology involved in impurity elements modification may be independent of eutectic nucleation.展开更多
Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium...Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium vapor pressure, condensation temperature, and condensation zone temperature gradient on magnesium vapor nucleation in phase transitions and condensation from atomic collision and coacervation with collision under vacuum conditions were discussed. Magnesium powder and magnesium lump condensates were produced under different conditions and characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The right condensation zone temperature approach to the liquid transition primarily improved the magnesium vapor concentration rate. The gas-solid phase transition was primarily inhibited by setting a small condenser temperature gradient. Under the right condensation temperature and temperature gradients, increasing magnesium vapor partial pressure improved crystallization and reduced the oxidation rate.展开更多
A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibri...A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibrium shape was deposited on Cu substrates by hot-filament chemical vapor deposition(HF-CVD),and the sp2 carbon content was less than 5.56%.The nucleation and growth of diamond film were investigated by micro-Raman spectroscopy,scanning electron microscopy,and X-ray diffraction.The results show that the nucleation density of diamond on the Ni-modified Cu substrates is 10 times higher than that on blank Cu substrates.The enhancement mechanism of the nucleation kinetics by Ni modification layer results from two effects:namely,the nanometer rough Ni-modified surface shows an improved absorption of nanodiamond particles that act as starting points for the diamond nucleation during HF-CVD process;the strong catalytic effect of the Ni-modified surface causes the formation of graphite layer that acts as an intermediate to facilitate diamond nucleation quickly.展开更多
Through the methods of correlation analysis and main factor analysis, the relationship between the poplar INA bacte-rial canker and circumstances was analyzed and 9 main factors for affecting the disease were selected...Through the methods of correlation analysis and main factor analysis, the relationship between the poplar INA bacte-rial canker and circumstances was analyzed and 9 main factors for affecting the disease were selected. Based on the compre-hensive analysis of main factors and induced factors, the standard for risk grades of this disease was promoted and northeast region of China was divided into 4 districts with different risk grades: seriously occurring district, commonly occurring district, occasionally occurring district, and un-occurring district. Nonlinear regression analysis for six model curves showed that the Richard growth model was suitable for describing the temporal dynamics of poplar INA bacterial canker. By stepwise variable selection method, the multi-variable linear regression forecasting equation was set up to predict the next year抯 disease index, and the GM (1,1) model was also set up by grey method to submit middle or long period forecast.展开更多
Effect of direct current negative bias on diamond nucleation in microwave plasma assisted chemical vapor deposition system was discussed. The influence of the magnitude of negative bias value,bias duration and methane...Effect of direct current negative bias on diamond nucleation in microwave plasma assisted chemical vapor deposition system was discussed. The influence of the magnitude of negative bias value,bias duration and methane concentration in the gas mixture on nucleation density of diamond films was studied respectively. It is demonstrated that direct current negative bias can drastically enhance the diamond nucleation at a suitable value.Long bias duration and high methane concentration are helpful for diamond nucleation.展开更多
Due to depletion interactions, a few of colloidal spheres will be packed into cluster or clusters, even a phase transition may take place if the volume fraction of system is large enough. In a binary colloidal system,...Due to depletion interactions, a few of colloidal spheres will be packed into cluster or clusters, even a phase transition may take place if the volume fraction of system is large enough. In a binary colloidal system, if the mole fraction of one component is very small, then it can be taken as the impurity of the other component. In this work, the effect of impurity on critical conditions of colloidal cluster nucleation was studied by Carnahan-Starling state equation and the principle of entropy maximum. The results show that, even the mole fraction of small-spheres is very small, the critical volume fraction is obvious smaller than that of one component system, so the influence on critical volume fraction from impurity is very huge and cannot be ignored. In addition, it is also found that, the larger the volume fraction of the system is, the larger cluster density can be packed, however, the critical size of nucleating cluster is almost independent of the density of the cluster.展开更多
基金The National Natural Science Foundation of China(No.52122802,52078126)Jiangsu Provincial Department of Science and Technology Innovation Support Program(No.BK20222004,BZ2022036).
文摘The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by immersion in an aqueous environment to transform it into C-S-H.This two-step nucleation approach results in C-S-H with a specific surface area of 497.2 m^(2)/g,achieved by preventing C-S-H foil overlapping and refining its pore structure.When impregnated with paraffin,the novel C-S-H/paraffin composite exhibits superior thermal properties,such as a higher potential heat value of 148.3 J/g and an encapsulation efficiency of 81.6%,outperforming conventional C-S-H.Moreover,the composite material demonstrates excellent cyclic performance,indicating its potential for building thermal storage compared to other paraffin-based composites.Compared with the conventional method,this simple technology,which only adds conversion and centrifugation steps,does not negatively impact preparation costs,the environment,and resource consumption.This study provides valuable theoretical insights for designing thermal storage concrete materials and advancing building heat management.
基金Project supported by the National Natural Science Foundation of China(52064011,52274331)Science and Technology Planning Project of Guizhou(Qian Ke He Ji Chu ZK[2021]258,Qian Ke He Chengguo[2022]089,Qian Ke He Chengguo[2021]086)。
文摘It is challenging to assess the mechanism responsible for the nucleation of inclusions in metals at high temperatures.The present work therefore systematically investigates the nucleation of cerium oxide inclusions according to classical nucleation theory and a two-step nucleation mechanism.The nucleation rates and nucleation radii of these inclusions are obtained,and the results demonstrate a considerable difference between theoretical and experimental values.On the basis of a two-step nucleation mechanism,(CeO_(2))_(n) and(Ce_(2)O_(3))_(n)(n=1-6)clusters were constructed and the thermodynamic properties of both these clusters and of cerium oxide nanoparticles were analyzed.In addition,the entropies and heat capacity changes of cerium oxides were determined using first principles calculations and are found to be consistent with literature data.The present data indicate that the cerium oxide inclusion nucleation pathway can be summarized as[Ce]+[O]→(CeO_(2))n/(Ce_(2)O_(3))_(n)→(Ce_(2)O_(3))_(n)→(Ce_(2)O_(3))_(2)→core(Ce_(2)O_(3)crystal)-shell((Ce_(2)O_(3))_(2) cluster)nanoparticles→(Ce_(2)O_(3))bulk.
基金supported by the National Natural Science Foundation of China(grant no.52371029)the Science and Technology Development Program of Jilin Province,China(grant no.20210402083GH).
文摘It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the heterogeneous nucleation of twinned Al grains on twin-structured TiC nucleants and the preferred growth of twinned dendrites by laser surface remelting of bulk metals. The solidification structure at the surface shows a mixture of lamellar twinned dendrites with ultra-fine twin boundary spacing (∼2 µm), isolated twinned dendrites, and regular dendrites. EBSD analysis and finite element method (FEM) simulations have been used to understand the competitive growth between twinned and regular dendrites, and the solidification conditions for the preferred growth of twinned dendrites during laser remelting and subsequent rapid solidification are established. It is shown that the reduction in the ratio of temperature gradient G to solidification rate V promotes the formation of lamellar twinned dendrites. The primary trunk spacing of lamellar twinned dendrites is refined by the high thermal gradient and solidification rate. The present work paves a new way to generate high-density growth twins in additive-manufactured Al alloys.
基金supported by the National Natural Science Foundation of China(12322406,12404208)the National Key R&D Program of China(2022YFA1403503)+2 种基金China Postdoctoral Science Foundation(2024M750970)the Science and Technology Program of Guangzhou(SL2024A04J00033)the Scientific Research lnnovation Project of Graduate School of South China Normal University.
文摘The unique structure and exceptional properties of two-dimensional(2D)materials offer significant potential for transformative advancements in semiconductor industry.Similar to the reliance on wafer-scale single-crystal ingots for silicon-based chips,practical applications of 2D materials at the chip level need large-scale,high-quality production of 2D single crystals.Over the past two decades,the size of 2D single-crystals has been improved to wafer or meter scale,where the nucleation control during the growth process is particularly important.Therefore,it is essential to conduct a comprehensive review of nucleation control to gain fundamental insights into the growth of 2D single-crystal materials.This review mainly focuses on two aspects:controlling nucleation density to enable the growth from a single nucleus,and controlling nucleation position to achieve the unidirectionally aligned islands and subsequent seamless stitching.Finally,we provide an overview and forecast of the strategic pathways for emerging 2D materials.
基金supported by the Natural Science Foundation of Shaanxi Province of China(No.2023-JC-QN-0466)the National Natural Science Foundation of China(Nos.52305421 and 52175363)+1 种基金the General Research Fund of Hong Kong(No.15223520)the project No.1-ZE1W from the Hong Kong Polytechnic University.
文摘Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal deformation of an ingot without homogenization treatment aiming at exploring a new efficient strategy of ingot cogging for superalloys.The as-cast samples were deformed at the sub-solvus temperature,and the DRX evolution from dendritic arms(DAs)to inter-dendritic regions(IDRs)was discussed based on the observation of the fishnet-like DRX microstructures and the gradient of DRX grain size at IDRs.The difference in the precipitates at DAs and IDRs played an essential role during the deformation and DRX process,which finally resulted in very different microstructures in the two areas.A selective straininduced grain boundary bulging(SIGBB)mechanism was found to function well and dominate the DRX nucleation at DAs.The grain boundary was able to migrate and bulge to nucleate on the condition that the boundary was located at DAs and had a great difference in dislocation density between its opposite sides at the same time.As for DRX nucleation at IDRs,the particle-stimulated nucleation(PSN)mechanism played a leading role,and the progressive subgrain rotation(PSR)and geometric DRX were two important supplementary mechanisms.The dislocation accumulation around the coarse precipitates at IDR resulted in progressive orientation rotation,which would generate DRX nuclei once the maximum misorientation there was sufficient to form a high-angle boundary with the matrix.The PSR or geometric DRX functioned at the severely elongated IDRs at the later stage of deformation,depending on the thickness of the elongated IDRs.The uniform microstructure was obtained by the deformation without homogenization and the subsequent annealing treatment.The smaller strain,the lower annealing temperature,and the much shorter soaking time requested in the above process lead to a smaller risk of cracking and a lower consumption of energy during the ingot-cogging process.
基金supported by the National Natural Science Foun-dation of China(Grant No.52176077).
文摘Bubble nucleation plays a crucial role in boiling heat transfer and other applications.Traditional experiments struggle to capture its microscopic mechanisms,making molecular dynamics simulations a powerful tool for such studies.This work uses molecular dynamics simulations to investigate bubble nucleation of water on copper surfaces with sinusoidal groove roughness under varying heat flux and surface wettability.Results show that at the same wettability,higher heat flux leads to higher surface temperatures after the same heating time,promoting bubble nucleation,growth,and departure.Moreover,under constant heat flux,stronger surface hydrophilicity enhances heat transfer from the solid to the liquid,further accelerating the nucleation.This study provides valuable insights into the mechanism of bubble nucleation and offers theoretical guidance for enhancing heat transfer.
基金supported by U.S.National Science Foundation grant RISE-2425889.
文摘Earthquakes are caused by the rapid slip along seismogenic faults.Whether large or small,there is inevitably a certain nucleation process involved before the dynamic rupture.At the same time,significant foreshock activity has been observed before some but not all large earthquakes.Understanding the nucleation process and foreshocks of earthquakes,especially large damaging ones,is crucial for accurate earthquake prediction and seismic hazard mitigation.The physical mechanism of earthquake nucleation and foreshock generation is still in debate.While the earthquake nucleation process is present in laboratory experiments and numerical simulations,it is difficult to observe such a process directly in the field.In addition,it is currently impossible to effectively distinguish foreshocks from ordinary earthquake sequences.In this article,we first summarize foreshock observations in the last decades and attempt to classify them into different types based on their temporal behaviors.Next,we present different mechanisms for earthquake nucleation and foreshocks that have been proposed so far.These physical models can be largely grouped into the following three categories:elastic stress triggering,aseismic slip,and fluid flows.We also review several recent studies of foreshock sequences before moderate to large earthquakes around the world,focusing on how different results/conclusions can be made by different datasets/methods.Finally,we offer some suggestions on how to move forward on the research topic of earthquake nucleation and foreshock mechanisms and their governing factors.
文摘The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error does not affect the conclusions of the study,and we apologize for any confusion it may have caused.
基金supported by the National Natural Science Foundation of China(22179005,92372207)Fundamental Research Funds for the Central Universities(2022CX01017).
文摘Lithium metal is a compelling choice as an anode material for high-energy-density batteries,attributed to its elevated theoretical specific energy and low redox potential.Nevertheless,challenges arise due to its susceptibility to high-volume changes and the tendency for dendritic development during cycling,leading to restricted cycle life and diminished Coulombic efficiency(CE).Here,we innovatively engineered a kind of porous biocarbon to serve as the framework for a lithium metal anode,which boasts a heightened specific surface area and uniformly dispersed ZnO active sites,directly derived from metasequoia cambium.The porous structure efficiently mitigates local current density and alleviates the volume expansion of lithium.Also,incorporating the ZnO lithiophilic site notably reduces the nucleation overpotential to a mere 16 mV,facilitating the deposition of lithium in a compact form.As a result,this innovative material ensures an impressive CE of 98.5%for lithium plating/stripping over 500 cycles,a remarkable cycle life exceeding 1200 h in a Li symmetrical cell,and more than 82%capacity retention ratio after an astonishing 690 cycles in full cells.In all,such a rationally designed Li composite anode effectively mitigates volume change,enhances lithophilicity,and reduces local current density,thereby inhibiting dendrite formation.The preparation of a highperformance lithium anode frame proves the feasibility of using biocarbon in a lithium anode frame.
基金sponsored by the Hengdian Group Holding Co.LTDsupported by the joint fund from Hengdian Group and Shanghai Institute of Ceram-ics,Chinese Academy of Sciences
文摘Stability hinders further development of all-inorganic CsPb X_(3)(X=Cl,Br,I)quantum dots(QDs)although they exhibit promising prospects in optoelectronic applications.Coating perovskite quantum dots(PQDs)with a glass network to form QD glass can significantly improve their stability.However,the dense glass network degrades their luminescent performance.In this work,the crystallization behavior of PQDs in glass and better luminescence properties are prompted by introducing titanium dioxide into borosilicate glass.The luminescence intensity of TiO_(2)-doped CsPbBr_(3)QD glass is increased by 1.6 times and the PLQY is increased from 49.8%to 79%compared to the undoped glass.Evidence proves that the improved prop-erties are attributed to the enhanced nucleation effect of titanium dioxide during the annealing process.Benefiting from the densification of the glass network caused by titanium dioxide doping,the stability of the PQD glass is further improved.LED devices with an ultra-wide color gamut that fully covers the NTSC1953 standard and achieves 128.6%of the NTSC1953 standard as well as 91.1%of the Rec.2020 stan-dard were fabricated by coupling PQD glass powder,demonstrating promising commercial applications of PQD glass in optoelectronic displays.
基金supported by the China Scholarship Council(Grant No.202007865002)the National Natural Science Foundation of China(Grant Nos.51865027,52065036,and 52065037)+2 种基金the Educational Unveiling Leadership Project of Gansu Province of China(Grant No.2021jyjbgs01)the support by JSPS KAKENHI(Grant No.JP23K20037)MEXT Programs(Grant Nos.JPMXP1122684766,JPMXP1020230325,and JPMXP1020230327).
文摘This paper investigates the temperature and loading rate dependencies of the critical stress intensity fac-tor(KIC)for dislocation nucleation at crack tips.We develop a new KIC formula with a generalized form by incorporating the atomistic reaction pathway analysis into Transition State Theory(TST),which cap-tures the KIC of the first dislocation nucleation event at crack tips and its sensitivity to temperature and loading rates.We use this formula and atomistic modeling information to specifically calculate the KIC for quasi-two-dimensional crack tips located at various slant twin boundaries in nano-twinned TiAl al-loys across a wide range of temperatures and strain rates.Our findings reveal that twinning dislocation nucleation at the crack tip dominates crack propagation when twin boundaries(TBs)are tilted at 15.79°and 29.5°.Conversely,when TBs tilt at 45.29°,54.74°,and 70.53°,dislocation slip becomes the preferred mode.Additionally,at TB tilts of 29.5°and 70.53°,at higher temperatures above 800 K and typical exper-imental loading rates,both dislocation nucleation modes can be activated with nearly equal probability.This observation is particularly significant as it highlights scenarios that molecular dynamics simulations,due to their time scale limitations,cannot adequately explore.This insight underscores the importance of analyzing temperature and loading rate dependencies of the KIC to fully understand the competing mechanisms of dislocation nucleation and their impact on material behavior.
基金supported by the National Natural Science Foundation of China(Nos.51871100 and 12074126).
文摘Silicon(Si)is an inevitable impurity element in the AZ31 alloy.In this study,the Si impurity was detected mainly as fine Mg_(2)Si particles dispersed widely within the central region of the Mg_(17)Al_(12) phase.During the solidification process,the Mg_(2)Si particle precipitates at about 565℃,before the Mg_(17)Al_(12) phase of 186℃,potentially acting as the heterogeneous nucleation core for the Mg_(17)Al_(12) phase.The orientation relationship between Mg_(2)Si and Mg_(17)Al_(12) was investigated using the Edge-to-Edge matching model(E2EM)calculations,which showed a misfit of only 0.1%.This low misfit suggests that Mg_(2)Si can serve as a heterogeneous nucleation site for Mg_(17)Al_(12).The surface and interface structures of Mg_(2)Si(220)and Mg_(17)Al_(12)(332)were constructed,and then investigated through the first-principles calculation.The theoretical results indicate that Mg and Al are easily adsorbed on the surface of Mg_(2)Si,with Al showing higher adsorption energy than Mg.Furthermore,the interface between Mg_(2)Si and Mg_(17)Al_(12) exhibits favorable thermodynamic stability.Combined with experiments and theoretical calculations,it is confirmed that the Mg_(2)Si particles,formed due to the Si impurity,provide effective heterogeneous nucleation sites for the Mg_(17)Al_(12) phase.
基金Project (42-QP-009) support by Research Fund of the State Key Laboratory of Solidification Processing,ChinaProject (B08040) supported by the Program of Introducing Talents of Discipline to Universities ("111"Project),China
文摘Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microscopy. DSC results were used to calculate the activation energy and nucleation work of primaryα(Al) phase. The results show that the values of activation energy and nucleation work are decreased and the nucleation frequency is increased with the additions of Ce and Sr to the alloys. Moreover, the grain size of dendriticα(Al) phase is well refined, and the nucleation temperatures of primaryα(Al) dendrites are decreased with the additions of Ce and Sr. The effects of elements Ce and Sr additions on kinetic nucleation of primary α(Al) phases were also discussed in hypoeutectic Al-7%Si-Mg cast alloy.
基金Project(XKY2009035) supported by the Key Laboratory for Ecological-Environment Materials of Jiangsu Province,ChinaProject(11KJD430006) supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(AE201034) supported by the Research Finds of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province,China
文摘The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing the eutectic cells and analyzing the crystallographic orientation,it was found that both the eutectic Si and Al phases in an eutectic cell were not single crystal,representing an eutectic cell consisting of small 'grains'.It is also suggested that the eutectic nucleation mode can not be determined based on the crystallographic orientation between eutectic Al phases and the neighboring primary dendrite Al phases.However,the evolution of primary dendrite Al phases affects remarkably the following nucleation and growth of eutectic cell.The coarse flake-fine fibrous transition of eutectic Si morphology involved in impurity elements modification may be independent of eutectic nucleation.
基金Project(51304095)supported by the National Natural Science Foundation of ChinaProject(S2013FZ029)supported by Science and Technology Planning Project of Yunnan Province
文摘Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium vapor pressure, condensation temperature, and condensation zone temperature gradient on magnesium vapor nucleation in phase transitions and condensation from atomic collision and coacervation with collision under vacuum conditions were discussed. Magnesium powder and magnesium lump condensates were produced under different conditions and characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The right condensation zone temperature approach to the liquid transition primarily improved the magnesium vapor concentration rate. The gas-solid phase transition was primarily inhibited by setting a small condenser temperature gradient. Under the right condensation temperature and temperature gradients, increasing magnesium vapor partial pressure improved crystallization and reduced the oxidation rate.
基金Project(20110933K) supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(2012QNZT002) supported by the Freedom Explore Program of Central South University,ChinaProject(CSUZC2012024) supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibrium shape was deposited on Cu substrates by hot-filament chemical vapor deposition(HF-CVD),and the sp2 carbon content was less than 5.56%.The nucleation and growth of diamond film were investigated by micro-Raman spectroscopy,scanning electron microscopy,and X-ray diffraction.The results show that the nucleation density of diamond on the Ni-modified Cu substrates is 10 times higher than that on blank Cu substrates.The enhancement mechanism of the nucleation kinetics by Ni modification layer results from two effects:namely,the nanometer rough Ni-modified surface shows an improved absorption of nanodiamond particles that act as starting points for the diamond nucleation during HF-CVD process;the strong catalytic effect of the Ni-modified surface causes the formation of graphite layer that acts as an intermediate to facilitate diamond nucleation quickly.
基金National Foundation of Ninth Five-Year Plan (No. 96-005-04-01-03).
文摘Through the methods of correlation analysis and main factor analysis, the relationship between the poplar INA bacte-rial canker and circumstances was analyzed and 9 main factors for affecting the disease were selected. Based on the compre-hensive analysis of main factors and induced factors, the standard for risk grades of this disease was promoted and northeast region of China was divided into 4 districts with different risk grades: seriously occurring district, commonly occurring district, occasionally occurring district, and un-occurring district. Nonlinear regression analysis for six model curves showed that the Richard growth model was suitable for describing the temporal dynamics of poplar INA bacterial canker. By stepwise variable selection method, the multi-variable linear regression forecasting equation was set up to predict the next year抯 disease index, and the GM (1,1) model was also set up by grey method to submit middle or long period forecast.
文摘Effect of direct current negative bias on diamond nucleation in microwave plasma assisted chemical vapor deposition system was discussed. The influence of the magnitude of negative bias value,bias duration and methane concentration in the gas mixture on nucleation density of diamond films was studied respectively. It is demonstrated that direct current negative bias can drastically enhance the diamond nucleation at a suitable value.Long bias duration and high methane concentration are helpful for diamond nucleation.
文摘Due to depletion interactions, a few of colloidal spheres will be packed into cluster or clusters, even a phase transition may take place if the volume fraction of system is large enough. In a binary colloidal system, if the mole fraction of one component is very small, then it can be taken as the impurity of the other component. In this work, the effect of impurity on critical conditions of colloidal cluster nucleation was studied by Carnahan-Starling state equation and the principle of entropy maximum. The results show that, even the mole fraction of small-spheres is very small, the critical volume fraction is obvious smaller than that of one component system, so the influence on critical volume fraction from impurity is very huge and cannot be ignored. In addition, it is also found that, the larger the volume fraction of the system is, the larger cluster density can be packed, however, the critical size of nucleating cluster is almost independent of the density of the cluster.