The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chel...The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.展开更多
Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the random...Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.展开更多
Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining ...Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining subsidence using D-InSAR technique and probability integral method. The details of the algorithm are as follows:the control points set, containing correct phase unwrapping points on the subsidence basin edge generated by D-InSAR and several observation points (near the maximum subsidence and inflection points), was established at first; genetic algorithm (GA) was then used to optimize the parameters of probability integral method; at last, the surface subsidence was deduced according to the optimum parameters. The results of the experiment in Huaibei mining area, China, show that the presented method can generate the correct mining subsidence basin with a few surface observations, and the relative error of maximum subsidence point is about 8.3%, which is much better than that of conventional D-InSAR (relative error is 68.0%).展开更多
In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening c...In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening calculation based on semi infinite body model, especially near the two roll barrel edges, a new and more accurate roll flattening model is proposed. Based on boundary integral equation method, an analytical model for solving a finite length semi infinite body is established. The lateral surface displacement field of the finite length semi-infinite body is simulated by finite element method (FEM) and lateral surface displacement decay functions are established. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distribu ted force is obtained and an accurate roll flattening model is established. Different from the traditional semi-infinite body model, the matrix form of the new roll flattening model is established through the mathematical derivation. The result from the new model is more consistent with that by FEM especially near the edges.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
An adaptive cell-based domain integration method(CDIM) is proposed for the treatment of domain integrals in 3D boundary element method(BEM). The domain integrals are computed in background cells rather than volume...An adaptive cell-based domain integration method(CDIM) is proposed for the treatment of domain integrals in 3D boundary element method(BEM). The domain integrals are computed in background cells rather than volume elements. The cells are created from the boundary elements based on an adaptive oct-tree structure and no other discretization is needed. Cells containing the boundary elements are subdivided into smaller sub-cells adaptively according to the sizes and levels of the boundary elements; and the sub-cells outside the domain are deleted to obtain the desired accuracy. The method is applied in the 3D potential and elasticity problems in this paper.展开更多
For deep tunnel projects,selecting an appropriate initial support distance is critical to improving the self-supporting capacity of surrounding rock.In this work,an intuitive method for determining the tunnel’s initi...For deep tunnel projects,selecting an appropriate initial support distance is critical to improving the self-supporting capacity of surrounding rock.In this work,an intuitive method for determining the tunnel’s initial support distance was proposed.First,based on the convergence-confinement method,a three-dimensional analytical model was constructed by combining an analytical solution of a non-circular tunnel with the Tecplot software.Then,according to the integral failure criteria of rock,the failure tendency coefficients of hard surrounding rock were computed and the spatial distribution plots of that were constructed.On this basis,the tunnel’s key failure positions were identified,and the relationship between the failure tendency coefficient at key failure positions and their distances from the working face was established.Finally,the distance from the working face that corresponds to the critical failure tendency coefficient was taken as the optimal support distance.A practical project was used as an example,and a reasonable initial support distance was successfully determined by applying the developed method.Moreover,it is found that the stability of hard surrounding rock decreases rapidly within the range of 1.0D(D is the tunnel diameter)from the working face,and tends to be stable outside the range of 1.0D.展开更多
On the basis of three geological models and several orebody boundaries, a method of grid subdivision and integral has been proposed to calculate and evaluate the resources of cobalt-rich crusts on the seamounts in the...On the basis of three geological models and several orebody boundaries, a method of grid subdivision and integral has been proposed to calculate and evaluate the resources of cobalt-rich crusts on the seamounts in the central Pacific Ocean. The formulas of this method are deduced and the interface of program module is designed. The method is carried out in the software "Auto mapping system of submarine topography and geomorphology MBChart". This method and program will possibly become a potential tool to calculate the resources of seamounts and determine the target diggings for China' s next Five-year Plan.展开更多
This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic So...This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.展开更多
For the longitudinal seismic response analysis of a tunnel structure under asynchronous earthquake excitations,a longitudinal integral response deformation method classified as a practical approach is proposed in this...For the longitudinal seismic response analysis of a tunnel structure under asynchronous earthquake excitations,a longitudinal integral response deformation method classified as a practical approach is proposed in this paper.The determinations of the structural critical moments when maximal deformations and internal forces in the longitudinal direction occur are deduced as well.When applying the proposed method,the static analysis of the free-field computation model subjected to the least favorable free-field deformation at the tunnel buried depth is performed first to calculate the equivalent input seismic loads.Then,the equivalent input seismic loads are imposed on the integral tunnel-foundation computation model to conduct the static calculation.Afterwards,the critical longitudinal seismic responses of the tunnel are obtained.The applicability of the new method is verified by comparing the seismic responses of a shield tunnel structure in Beijing,determined by the proposed procedure and by a dynamic time-history analysis under a series of obliquely incident out-of-plane and in-plane waves.The results show that the proposed method has a clear concept with high accuracy and simple progress.Meanwhile,this method provides a feasible way to determine the critical moments of the longitudinal seismic responses of a tunnel structure.Therefore,the proposed method can be effectively applied to analyze the seismic response of a long-line underground structure subjected to non-uniform excitations.展开更多
In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] a...In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.展开更多
A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous H...A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous Hamiltonian system is multiplied by a set of multiplicative functions, then the general expression of the first integral can be obtained, An example is given to illustrate the application of the results.展开更多
In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equation...In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equations with certain analytic inputs. They obtain both the conditions of solvability and the solutions in closed form. It is noteworthy that the method is different from the classical one that is due to Lu.展开更多
In this paper,the classical composite middle rectangle rule for the computation of Cauchy principal value integral(the singular kernel 1=(x-s))is discussed.With the density function approximated only while the singula...In this paper,the classical composite middle rectangle rule for the computation of Cauchy principal value integral(the singular kernel 1=(x-s))is discussed.With the density function approximated only while the singular kernel is calculated analysis,then the error functional of asymptotic expansion is obtained.We construct a series to approach the singular point.An extrapolation algorithm is presented and the convergence rate of extrapolation algorithm is proved.At last,some numerical results are presented to confirm the theoretical results and show the efficiency of the algorithms.展开更多
A new method named the state space boundary element method (SSBEM) is estab- lished, in which the problem domain is divided into two parts. One is the boundary element domain which includes the interested inner poin...A new method named the state space boundary element method (SSBEM) is estab- lished, in which the problem domain is divided into two parts. One is the boundary element domain which includes the interested inner point, and the other is the state space domain. The boundary integral equation and the state space equation are combined together based on the interfacial continuity condition to form the system equation of the SSBEM. The SSBEM synthe- sizes both advantages of the boundary element method and the state space method. However, it can give inaccurate results when being used to evaluate the mechanical quantity of a point very close to the boundary element, because the Gaussian quadrature fails to calculate the nearly singular integrals. The analytical formulas were developed by part of the authors before intro- duced to deal with the nearly singular integrals. Thus, the SSBEM can yield accurate physical quantities for the points very close to the boundary element. The SSBEM results agree well with those of the finite element method (FEM), while the discretized elements are far fewer than those of the FEM. Meanwhile, the SSBEM can analyze very thin coating, while the FEM fails due to the limitation of tolerance for Boolean operations.展开更多
While the approximate solutions of one-dimensional nonlinear Volterra-Fredholm integral equations with smooth kermels are now well understood,no systematic studies of the numerical solutions of their multi-dimensional...While the approximate solutions of one-dimensional nonlinear Volterra-Fredholm integral equations with smooth kermels are now well understood,no systematic studies of the numerical solutions of their multi-dimensional counterparts exist.In this paper,we provide an efficient numerical approach for the multi-dimensional nonlinear Volterra-Fredholm integral equations based on the multi-variate Legendre-collocation approach.Spectral collocation methods for multi-dimensional nonlinear integral equations are known to cause major difficulties from a convergence analysis point of view.Consequently,rigorous error estimates are provided in the weighted Sobolev space showing the exponential decay of the numerical errors.The existence and uniqueness of the numerical solution are established.Numerical experiments are provided to support the theoretical convergence analysis.The results indicate that our spectral collocation method is more flexible with better accuracy than the existing ones.展开更多
Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the conv...Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the convergence region of the Picard iteration method, multistage algorithm is devised. We also introduce an algorithm for problems with some singularities at the limits of integration including fractional integral equations. Numerical tests verify the validity of the proposed schemes.展开更多
In this paper, Adomian decomposition method (ADM) is used to solve the Volterra-Fredholm integral equation. A number of examples have been presented to explain the numerical results, which is the comparison between th...In this paper, Adomian decomposition method (ADM) is used to solve the Volterra-Fredholm integral equation. A number of examples have been presented to explain the numerical results, which is the comparison between the exact solution and the numerical solution, and it is found through the tables and the amount of error between the exact solution and the numerical solution, it is very small and almost non-existent and is also illustrated through the graph how the exact solution of completely applies to the numerical solution This proves the accuracy of the method, which is the Adomian decomposition method (ADM) for solving the Volterra Fredholm integral equation using Maple 18. And that this method is characterized by ease, speed and great accuracy in obtaining numerical results.展开更多
In this article, a general formula of the first integral method has been extended to celebrate the exact solution of nonlinear time-space differential equations of fractional orders. The proposed method is easy, direc...In this article, a general formula of the first integral method has been extended to celebrate the exact solution of nonlinear time-space differential equations of fractional orders. The proposed method is easy, direct and concise as compared with other existent methods.展开更多
The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and elemen...The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.展开更多
文摘The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.
基金supports of the National Natural Science Foundation of China(Nos.12032008,12102080)the Fundamental Research Funds for the Central Universities,China(No.DUT23RC(3)038)are much appreciated。
文摘Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.
基金Project (BK20130174) supported by the Basic Research Project of Jiangsu Province (Natural Science Foundation) Project (1101109C) supported by Jiangsu Planned Projects for Postdoctoral Research Funds,China+1 种基金Project (201325) supported by the Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping,ChinaProject (SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining subsidence using D-InSAR technique and probability integral method. The details of the algorithm are as follows:the control points set, containing correct phase unwrapping points on the subsidence basin edge generated by D-InSAR and several observation points (near the maximum subsidence and inflection points), was established at first; genetic algorithm (GA) was then used to optimize the parameters of probability integral method; at last, the surface subsidence was deduced according to the optimum parameters. The results of the experiment in Huaibei mining area, China, show that the presented method can generate the correct mining subsidence basin with a few surface observations, and the relative error of maximum subsidence point is about 8.3%, which is much better than that of conventional D-InSAR (relative error is 68.0%).
基金Item Sponsored by National Natural Science Foundation of China(51075353)
文摘In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening calculation based on semi infinite body model, especially near the two roll barrel edges, a new and more accurate roll flattening model is proposed. Based on boundary integral equation method, an analytical model for solving a finite length semi infinite body is established. The lateral surface displacement field of the finite length semi-infinite body is simulated by finite element method (FEM) and lateral surface displacement decay functions are established. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distribu ted force is obtained and an accurate roll flattening model is established. Different from the traditional semi-infinite body model, the matrix form of the new roll flattening model is established through the mathematical derivation. The result from the new model is more consistent with that by FEM especially near the edges.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
基金Financial support for the project from the National Natural Science Foundation of China(No.51609181)
文摘An adaptive cell-based domain integration method(CDIM) is proposed for the treatment of domain integrals in 3D boundary element method(BEM). The domain integrals are computed in background cells rather than volume elements. The cells are created from the boundary elements based on an adaptive oct-tree structure and no other discretization is needed. Cells containing the boundary elements are subdivided into smaller sub-cells adaptively according to the sizes and levels of the boundary elements; and the sub-cells outside the domain are deleted to obtain the desired accuracy. The method is applied in the 3D potential and elasticity problems in this paper.
基金Project(2021JLM-49) supported by Natural Science Basic Research Program of Shaanxi-Joint Fund of Hanjiang to Weihe River Valley Water Diversion Project,ChinaProject(42077248) supported by the National Natural Science Foundation of China
文摘For deep tunnel projects,selecting an appropriate initial support distance is critical to improving the self-supporting capacity of surrounding rock.In this work,an intuitive method for determining the tunnel’s initial support distance was proposed.First,based on the convergence-confinement method,a three-dimensional analytical model was constructed by combining an analytical solution of a non-circular tunnel with the Tecplot software.Then,according to the integral failure criteria of rock,the failure tendency coefficients of hard surrounding rock were computed and the spatial distribution plots of that were constructed.On this basis,the tunnel’s key failure positions were identified,and the relationship between the failure tendency coefficient at key failure positions and their distances from the working face was established.Finally,the distance from the working face that corresponds to the critical failure tendency coefficient was taken as the optimal support distance.A practical project was used as an example,and a reasonable initial support distance was successfully determined by applying the developed method.Moreover,it is found that the stability of hard surrounding rock decreases rapidly within the range of 1.0D(D is the tunnel diameter)from the working face,and tends to be stable outside the range of 1.0D.
基金This study was supported by Projects under contract Nos DY105 China's 0cean-03-01-01 and DY105-03-01-07the National Natural Science Foundation of China under contract No.40506017the Youth Foundation of Marine High-tech Project of China under contract No.2002AA616010.
文摘On the basis of three geological models and several orebody boundaries, a method of grid subdivision and integral has been proposed to calculate and evaluate the resources of cobalt-rich crusts on the seamounts in the central Pacific Ocean. The formulas of this method are deduced and the interface of program module is designed. The method is carried out in the software "Auto mapping system of submarine topography and geomorphology MBChart". This method and program will possibly become a potential tool to calculate the resources of seamounts and determine the target diggings for China' s next Five-year Plan.
基金Project supported by the Natural Science Foundation of China(10371009)Research Fund for the Doctoral Program Higher Education
文摘This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.
基金National Natural Science Foundation of China under Grant No.51478247。
文摘For the longitudinal seismic response analysis of a tunnel structure under asynchronous earthquake excitations,a longitudinal integral response deformation method classified as a practical approach is proposed in this paper.The determinations of the structural critical moments when maximal deformations and internal forces in the longitudinal direction occur are deduced as well.When applying the proposed method,the static analysis of the free-field computation model subjected to the least favorable free-field deformation at the tunnel buried depth is performed first to calculate the equivalent input seismic loads.Then,the equivalent input seismic loads are imposed on the integral tunnel-foundation computation model to conduct the static calculation.Afterwards,the critical longitudinal seismic responses of the tunnel are obtained.The applicability of the new method is verified by comparing the seismic responses of a shield tunnel structure in Beijing,determined by the proposed procedure and by a dynamic time-history analysis under a series of obliquely incident out-of-plane and in-plane waves.The results show that the proposed method has a clear concept with high accuracy and simple progress.Meanwhile,this method provides a feasible way to determine the critical moments of the longitudinal seismic responses of a tunnel structure.Therefore,the proposed method can be effectively applied to analyze the seismic response of a long-line underground structure subjected to non-uniform excitations.
文摘In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.
文摘A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous Hamiltonian system is multiplied by a set of multiplicative functions, then the general expression of the first integral can be obtained, An example is given to illustrate the application of the results.
基金Project was supported by RFDP of Higher Education and NNSF of China, SF of Wuhan University
文摘In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equations with certain analytic inputs. They obtain both the conditions of solvability and the solutions in closed form. It is noteworthy that the method is different from the classical one that is due to Lu.
基金The work of Jin Li was supported by National Natural Science Foundation of China(Grant No.11471195)China Postdoctoral Science Foundation(Grant No.2015T80703)+1 种基金Shan-dong Provincial Natural Science Foundation of China(Grant No.ZR2016JL006)Na-tional Natural Science Foundation of China(Grant No.11771398).
文摘In this paper,the classical composite middle rectangle rule for the computation of Cauchy principal value integral(the singular kernel 1=(x-s))is discussed.With the density function approximated only while the singular kernel is calculated analysis,then the error functional of asymptotic expansion is obtained.We construct a series to approach the singular point.An extrapolation algorithm is presented and the convergence rate of extrapolation algorithm is proved.At last,some numerical results are presented to confirm the theoretical results and show the efficiency of the algorithms.
基金This work was supported by National Natural Science Foundation of China (No.11772114) and Grants from China Scholarship Council (No. 201706690019).
文摘A new method named the state space boundary element method (SSBEM) is estab- lished, in which the problem domain is divided into two parts. One is the boundary element domain which includes the interested inner point, and the other is the state space domain. The boundary integral equation and the state space equation are combined together based on the interfacial continuity condition to form the system equation of the SSBEM. The SSBEM synthe- sizes both advantages of the boundary element method and the state space method. However, it can give inaccurate results when being used to evaluate the mechanical quantity of a point very close to the boundary element, because the Gaussian quadrature fails to calculate the nearly singular integrals. The analytical formulas were developed by part of the authors before intro- duced to deal with the nearly singular integrals. Thus, the SSBEM can yield accurate physical quantities for the points very close to the boundary element. The SSBEM results agree well with those of the finite element method (FEM), while the discretized elements are far fewer than those of the FEM. Meanwhile, the SSBEM can analyze very thin coating, while the FEM fails due to the limitation of tolerance for Boolean operations.
文摘While the approximate solutions of one-dimensional nonlinear Volterra-Fredholm integral equations with smooth kermels are now well understood,no systematic studies of the numerical solutions of their multi-dimensional counterparts exist.In this paper,we provide an efficient numerical approach for the multi-dimensional nonlinear Volterra-Fredholm integral equations based on the multi-variate Legendre-collocation approach.Spectral collocation methods for multi-dimensional nonlinear integral equations are known to cause major difficulties from a convergence analysis point of view.Consequently,rigorous error estimates are provided in the weighted Sobolev space showing the exponential decay of the numerical errors.The existence and uniqueness of the numerical solution are established.Numerical experiments are provided to support the theoretical convergence analysis.The results indicate that our spectral collocation method is more flexible with better accuracy than the existing ones.
文摘Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the convergence region of the Picard iteration method, multistage algorithm is devised. We also introduce an algorithm for problems with some singularities at the limits of integration including fractional integral equations. Numerical tests verify the validity of the proposed schemes.
文摘In this paper, Adomian decomposition method (ADM) is used to solve the Volterra-Fredholm integral equation. A number of examples have been presented to explain the numerical results, which is the comparison between the exact solution and the numerical solution, and it is found through the tables and the amount of error between the exact solution and the numerical solution, it is very small and almost non-existent and is also illustrated through the graph how the exact solution of completely applies to the numerical solution This proves the accuracy of the method, which is the Adomian decomposition method (ADM) for solving the Volterra Fredholm integral equation using Maple 18. And that this method is characterized by ease, speed and great accuracy in obtaining numerical results.
文摘In this article, a general formula of the first integral method has been extended to celebrate the exact solution of nonlinear time-space differential equations of fractional orders. The proposed method is easy, direct and concise as compared with other existent methods.
文摘The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.