In order to analyze the heterogeneity in vehicular traffic speed, a new method that integrates cluster analysis and probability distribution function fitting is presented. First, for identifying the optimal number of ...In order to analyze the heterogeneity in vehicular traffic speed, a new method that integrates cluster analysis and probability distribution function fitting is presented. First, for identifying the optimal number of clusters, the two-step cluster method is applied to analyze actual speed data, which suggests that dividing speed data into two clusters can best reflect the intrinsic patterns of traffic flows. Such information is then taken as guidance in probability distribution function fitting. The normal, skew-normal and skew-t distribution functions are used to fit the probability distribution of each cluster respectively, which suggests that the skew-t distribution has the highest fitting accuracy; the second is skew-normal distribution; the worst is normal distribution. Model analysis results demonstrate that the proposed mixture model has a better fitting and generalization capability than the conventional single model. In addition, the new method is more flexible in terms of data fitting and can provide a more accurate model of speed distribution.展开更多
Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method mor...Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method more easily controls the crystallization rate and is suitable for preparing large-area per-ovskite devices.However,the residual low-conductivity iodide layer in the two-step method can affect carrier transport and device stability,and the different crystallization rates of Sn-and Pb-based per-ovskites may result in poor film quality.Therefore,Sn-Pb mixed perovskites are mainly prepared by a one-step method.Herein,a MAPb_(0.5)Sn_(0.5)I_(3)-based self-powered photodetector without a hole transport layer is fabricated by a two-step method.By adjusting the concentration of the ascorbic acid(AA)addi-tive,the final perovskite film exhibited a pure phase without residues,and the optimal device exhibited a high responsivity(0.276 A W^(-1)),large specific detectivity(2.38×10^(12) Jones),and enhanced stability.This enhancement is mainly attributed to the inhibition of Sn2+oxidation,the control of crystal growth,and the sufficient reaction between organic ammonium salts and bottom halides due to the AA-induced pore structure.展开更多
A custom micro-arc oxidation(MAO)apparatus is employed to produce coatings under optimized constant voltage–current two-step power supply mode.Various analytical techniques,including scanning electron microscopy,conf...A custom micro-arc oxidation(MAO)apparatus is employed to produce coatings under optimized constant voltage–current two-step power supply mode.Various analytical techniques,including scanning electron microscopy,confocal laser microscopy,X-ray diffraction,X-ray photoelectron spectroscopy,transmission electron microscopy,and electrochemical analysis,are employed to characterize MAO coatings at different stages of preparation.MAO has MgO,hydroxyapatite,Ca_(3)(PO_(4))_(2),and Mg2SiO4 phases.Its microstructure of the coating is characterized by"multiple breakdowns,pores within pores",and"repaired blind pores".The porosity and the uniformity of MAO coating first declines in the constant voltage mode,then augments while the discharge phenomenon takes place,and finally decreases in the repair stage.These analyses reveal a four-stage growth pattern for MAO coatings:anodic oxidation stage,micro-arc oxidation stage,breakdown stage,and repairing stage.During anodic oxidation and MAO stages,inward growth prevails,while the breakdown stage sees outward and accelerated growth.Simultaneous inward and outward growth in the repair stage results in a denser,more uniform coating with increased thickness and improved corrosion resistance.展开更多
Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients a...Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments.展开更多
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse...Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.展开更多
The pursuit of Ag-based alloys with both high strength and toughness has posed a longstanding chal-lenge.In this study,we investigated the cluster strengthening and grain refinement toughening mecha-nisms in fully oxi...The pursuit of Ag-based alloys with both high strength and toughness has posed a longstanding chal-lenge.In this study,we investigated the cluster strengthening and grain refinement toughening mecha-nisms in fully oxidized AgMgNi alloys,which were internally oxidized at 800℃ for 8 h under an oxy-gen atmosphere.We found that Mg-O clusters contributed to the hardening(138 HV)and strengthening(376.9 MPa)of the AgMg alloy through solid solution strengthening effects,albeit at the expense of duc-tility.To address this limitation,we introduced Ni nanoparticles into the AgMg alloy,resulting in signifi-cant grain refinement within its microstructure.Specifically,the grain size decreased from 67.2μm in the oxidized AgMg alloy to below 6.0μm in the oxidized AgMgNi alloy containing 0.3 wt%Ni.Consequently,the toughness increased significantly,rising from toughness value of 2177.9 MJ m^(-3) in the oxidized AgMg alloy to 6186.1 MJ m^(-3) in the oxidized AgMgNi alloy,representing a remarkable 2.8-fold enhancement.Furthermore,the internally oxidized AgMgNi alloy attained a strength of up to 387.6 MPa,comparable to that of the internally oxidized AgMg alloy,thereby demonstrating the successful realization of concurrent strengthening and toughening.These results collectively offer a novel approach for the design of high-performance alloys through the synergistic combination of cluster strengthening and grain refinement toughening.展开更多
High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production meth...High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.展开更多
By systematically reviewing the development status of global carbon dioxide capture,utilization and storage(CCUS)cluster,and comparing domestic and international CCUS industrial models and successful experiences,this ...By systematically reviewing the development status of global carbon dioxide capture,utilization and storage(CCUS)cluster,and comparing domestic and international CCUS industrial models and successful experiences,this study explores the challenges and strategies for the scaled development of the CCUS industry of China.Globally,the CCUS industry has entered a phase of scaled and clustered development.North America has established a system of key technologies in large-scale CO_(2) capture,long-distance pipeline transmission,pipeline network optimization,and large-scale CO_(2) flooding for enhanced oil recovery(CO_(2)-EOR),with relatively mature cluster development and a gradual shift in industrial model from CO_(2)-EOR to geological storage.The CCUS industry of China has developed rapidly across all segments but remains in the early stage of cluster development,facing challenges such as absent business model,insufficient policy support,and technological gaps in core areas.China needs to improve the policy support system to boost enterprises participation across the entire industrial chain,strengthen top-level design and medium-to long-term planning to accelerate demonstration projects construction for whole-process CCUS clusters,advance for a full-chain technological system,including low-cost capture,pipeline optimization and EOR/storage integration technologies,and strengthen personnel training,strengthen discipline construction and university-enterprise research cooperation.展开更多
Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a...Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a formidable challenge.In this study,we introduce a novel V-type DA-D-A’emitter,Trz-mCzCbCz,by using a carborane scaffold.This design strategically incorporates carbazole(Cz)and 2,4,6-triphenyl-1,3,5-triazine(Trz)as donor and acceptor moieties,respectively.Theoretical calculations alongside experimental validations affirm the typical TSCT-TADF characteristics of this luminogen.Owing to the unique structural and electronic attributes of carboranes,Trz-mCzCbCz exhibits an orange-red emission,markedly diverging from the traditional blue-to-green emissions observed in classical Cz and Trz-based TADF molecules.Moreover,bright emission in aggregates was observed for Trz-mCzCbCz with absolute photoluminescence quantum yield(PLQY)of up to 88.8%.As such,we have successfully fabricated five organic light-emitting diodes(OLEDs)by utilizing Trz-mCzCbCz as the emitting layer.It is important to note that both the reverse intersystem crossing process and the TADF properties are profoundly influenced by host materials.The fabricated OLED devices reached a maximum external quantum efficiency(EQE)of 12.7%,with an emission peak at 592 nm.This represents the highest recorded efficiency for TSCT-TADF OLEDs employing carborane derivatives as emitting layers.展开更多
For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Veh...For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Vehicles(SRVs)into CP networks,which is called SRV-aided CP.However,the CP system may split into several sub-clusters that cannot be connected with each other in dense urban environments,in which the sub-clusters with few SRVs will suffer from degradation of CP performance.Since Unmanned Aerial Vehicles(UAVs)have been widely used to aid vehicular communications,we intend to utilize UAVs to assist sub-clusters in CP.In this paper,a UAV-aided CP network is constructed to fully utilize information from SRVs.First,the inter-node connection structure among the UAV and vehicles is designed to share available information from SRVs.After that,the clustering optimization strategy is proposed,in which the UAV cooperates with the high-precision sub-cluster to obtain available information from SRVs,and then broadcasts this positioning-related information to other low-precision sub-clusters.Finally,the Locally-Centralized Factor Graph Optimization(LC-FGO)algorithm is designed to fuse positioning information from cooperators.Simulation results indicate that the positioning accuracy of the CP system could be improved by fully utilizing positioning-related information from SRVs.展开更多
The legacy of United States cluster munition use in Laos and Cambodia during the Second Indochina War is residual bomblets that unexpectedly detonate years later, killing and injuring children, farmers, and other civi...The legacy of United States cluster munition use in Laos and Cambodia during the Second Indochina War is residual bomblets that unexpectedly detonate years later, killing and injuring children, farmers, and other civilians. Cluster munitions release dozens of smaller bomblets that rain deadly ammunition on troops, armored tanks, and vegetation, effectively striking broad sections of war zone landscapes in one launch. While many bomblets detonate immediately, others fail to detonate and can lie dormant on the ground for years. The primary objectives of this study were to document the long-term consequences and impacts of the US Air Force bombing of Laos and Cambodia during the Second Indochina War (1959 to 1973). The historical lessons learned by United States should be shared with Russia and Ukraine governments and military. These countries need to discontinue the use of cluster bombs to prevent additional people living along the Russia-Ukraine border from having to live and die with the consequences of unexploded ordnance, including cluster bombs, for the next century.展开更多
Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the...Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions.展开更多
An aluminoborate,Na_(2.5)Rb[Al{B_(5)O_(10)}{B_(3)O_(5)}]·0.5NO_(3)·H_(2)O(1),was synthesized under hydrothermal condition,which was built by mixed oxoboron clusters and AlO_(4)tetrahedra.In the structure,the...An aluminoborate,Na_(2.5)Rb[Al{B_(5)O_(10)}{B_(3)O_(5)}]·0.5NO_(3)·H_(2)O(1),was synthesized under hydrothermal condition,which was built by mixed oxoboron clusters and AlO_(4)tetrahedra.In the structure,the[B_(5)O_(10)]^(5-)and[B_(3)O_(7)]^(5-)clusters are alternately connected to form 1D[B_(8)O_(15)]_(n)^(6n-)chains,which are further linked by AlO_(4)units to form a 2D monolayer with 7‑membered ring and 10‑membered ring windows.Two adjacent monolayers with opposite orientations further form a porous‑layered structure with six channels through B—O—Al bonds.Compound 1 was characterized by single crystal X‑ray diffraction,powder X‑ray diffraction(PXRD),IR spectroscopy,UV‑Vis diffuse reflection spectroscopy,and thermogravimetric analysis(TGA),respectively.UV‑Vis diffuse reflectance analysis indicates that compound 1 shows a wide transparency range with a short cutoff edge of 201 nm,suggesting it may have potential application in UV regions.CCDC:2383923.展开更多
Ultrafine,highly dispersed Pt clusters were immobilized onto the Co nanoparticle surfaces by one-step pyrolysis of the precursor Pt(Ⅱ)-encapsulating Co-MOF-74.Owing to the small size effects of Pt clusters as well as...Ultrafine,highly dispersed Pt clusters were immobilized onto the Co nanoparticle surfaces by one-step pyrolysis of the precursor Pt(Ⅱ)-encapsulating Co-MOF-74.Owing to the small size effects of Pt clusters as well as the strongly enhanced synergistic interactions between Pt and Co atoms,the obtained Pt-on-Co/C400 catalysts exhib-ited excellent catalytic activity toward the hydrolysis of ammonia borane with an extremely high turnover frequency(TOF)value of 3022 min^(-1)at 303 K.Durability test indicated that the obtained Pt-on-Co/C400 catalysts possessed high catalytic stability,and there were no changes in the catalyst structures and catalytic activities after 10 cycles.展开更多
To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective clu...To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective cluster centers,a combination of density-based spatial clustering of applications with noise(DBSCAN)and Kmeans++is utilized.Subsequently,long short-term memory(LSTM)is employed to fit and yield optimized cluster centers with temporal information.Lastly,based on the new cluster centers and denoising ratio,a radius threshold is set,and noise points beyond this threshold are removed.The comprehensive denoising metrics F1_score of CBTDNN have achieved 0.8931,0.7735,and 0.9215 on the traffic sequences dataset,pedestrian detection dataset,and turntable dataset,respectively.And these metrics demonstrate improvements of 49.90%,33.07%,19.31%,and 22.97%compared to four contrastive algorithms,namely nearest neighbor(NNb),nearest neighbor with polarity(NNp),Autoencoder,and multilayer perceptron denoising filter(MLPF).These results demonstrate that the proposed method enhances the denoising performance of event-based sensors.展开更多
Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin s...Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024).展开更多
K-means uses the sum-of-squared error as the objective function to minimize within-cluster distances.We show that,as a consequence,it also maximizes between-cluster variances.This means that the two measures do not pr...K-means uses the sum-of-squared error as the objective function to minimize within-cluster distances.We show that,as a consequence,it also maximizes between-cluster variances.This means that the two measures do not provide complementary information and that using only one is enough.Based on this property,we propose a new objective function called cluster overlap,which is measured intuitively as the proportion of points shared between the clusters.We adopt the new function within k-means and present an algorithm called overlap k-means.It is an alternative way to design a k-means algorithm.A localized variant is also provided by limiting the overlap calculation to the neighboring points.展开更多
Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study comp...Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study compares the performance of practical iterative reallocation algorithms with model-based clustering algorithms.The data is from forest vegetation in Virginia(United States),the Hyrcanian Forest(Asia),and European beech forests.Practical iterative reallocation algorithms were applied as non-hierarchical methods and Finite Gaussian mixture modeling was used as a model-based clustering method.Due to limitations on dimensionality in model-based clustering,principal coordinates analysis was employed to reduce the dataset’s dimensions.A log transformation was applied to achieve a normal distribution for the pseudo-species data before calculating the Bray-Curtis dissimilarity.The findings indicate that the reallocation of misclassified objects based on silhouette width(OPTSIL)with Flexible-β(-0.25)had the highest mean among the tested clustering algorithms with Silhouette width 1(REMOS1)with Flexible-β(-0.25)second.However,model-based clustering performed poorly.Based on these results,it is recommended using OPTSIL with Flexible-β(-0.25)and REMOS1 with Flexible-β(-0.25)for forest vegetation classification instead of model-based clustering particularly for heterogeneous datasets common in forest vegetation community data.展开更多
基金The National Science Foundation by Changjiang Scholarship of Ministry of Education of China(No.BCS-0527508)the Joint Research Fund for Overseas Natural Science of China(No.51250110075)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK200910046)the Postdoctoral Science Foundation of Jiangsu Province(No.0901005C)
文摘In order to analyze the heterogeneity in vehicular traffic speed, a new method that integrates cluster analysis and probability distribution function fitting is presented. First, for identifying the optimal number of clusters, the two-step cluster method is applied to analyze actual speed data, which suggests that dividing speed data into two clusters can best reflect the intrinsic patterns of traffic flows. Such information is then taken as guidance in probability distribution function fitting. The normal, skew-normal and skew-t distribution functions are used to fit the probability distribution of each cluster respectively, which suggests that the skew-t distribution has the highest fitting accuracy; the second is skew-normal distribution; the worst is normal distribution. Model analysis results demonstrate that the proposed mixture model has a better fitting and generalization capability than the conventional single model. In addition, the new method is more flexible in terms of data fitting and can provide a more accurate model of speed distribution.
基金supported by the National Natural Science Foun-dation of China(Nos.52025028,52332008,52372214,52202273,and U22A20137)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method more easily controls the crystallization rate and is suitable for preparing large-area per-ovskite devices.However,the residual low-conductivity iodide layer in the two-step method can affect carrier transport and device stability,and the different crystallization rates of Sn-and Pb-based per-ovskites may result in poor film quality.Therefore,Sn-Pb mixed perovskites are mainly prepared by a one-step method.Herein,a MAPb_(0.5)Sn_(0.5)I_(3)-based self-powered photodetector without a hole transport layer is fabricated by a two-step method.By adjusting the concentration of the ascorbic acid(AA)addi-tive,the final perovskite film exhibited a pure phase without residues,and the optimal device exhibited a high responsivity(0.276 A W^(-1)),large specific detectivity(2.38×10^(12) Jones),and enhanced stability.This enhancement is mainly attributed to the inhibition of Sn2+oxidation,the control of crystal growth,and the sufficient reaction between organic ammonium salts and bottom halides due to the AA-induced pore structure.
文摘A custom micro-arc oxidation(MAO)apparatus is employed to produce coatings under optimized constant voltage–current two-step power supply mode.Various analytical techniques,including scanning electron microscopy,confocal laser microscopy,X-ray diffraction,X-ray photoelectron spectroscopy,transmission electron microscopy,and electrochemical analysis,are employed to characterize MAO coatings at different stages of preparation.MAO has MgO,hydroxyapatite,Ca_(3)(PO_(4))_(2),and Mg2SiO4 phases.Its microstructure of the coating is characterized by"multiple breakdowns,pores within pores",and"repaired blind pores".The porosity and the uniformity of MAO coating first declines in the constant voltage mode,then augments while the discharge phenomenon takes place,and finally decreases in the repair stage.These analyses reveal a four-stage growth pattern for MAO coatings:anodic oxidation stage,micro-arc oxidation stage,breakdown stage,and repairing stage.During anodic oxidation and MAO stages,inward growth prevails,while the breakdown stage sees outward and accelerated growth.Simultaneous inward and outward growth in the repair stage results in a denser,more uniform coating with increased thickness and improved corrosion resistance.
基金supported by the Foundation of President of Hebei University(XZJJ202303).
文摘Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments.
基金supported in part by NIH grants R01NS39600,U01MH114829RF1MH128693(to GAA)。
文摘Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.
基金supported by the National Natural Science Foundation of China(Nos.51977027 and 51967008)the Scientific and Technological Project of Yunnan Precious Metals Lab-oratory(Nos.YPML-2023050250 and YPML-2022050206).
文摘The pursuit of Ag-based alloys with both high strength and toughness has posed a longstanding chal-lenge.In this study,we investigated the cluster strengthening and grain refinement toughening mecha-nisms in fully oxidized AgMgNi alloys,which were internally oxidized at 800℃ for 8 h under an oxy-gen atmosphere.We found that Mg-O clusters contributed to the hardening(138 HV)and strengthening(376.9 MPa)of the AgMg alloy through solid solution strengthening effects,albeit at the expense of duc-tility.To address this limitation,we introduced Ni nanoparticles into the AgMg alloy,resulting in signifi-cant grain refinement within its microstructure.Specifically,the grain size decreased from 67.2μm in the oxidized AgMg alloy to below 6.0μm in the oxidized AgMgNi alloy containing 0.3 wt%Ni.Consequently,the toughness increased significantly,rising from toughness value of 2177.9 MJ m^(-3) in the oxidized AgMg alloy to 6186.1 MJ m^(-3) in the oxidized AgMgNi alloy,representing a remarkable 2.8-fold enhancement.Furthermore,the internally oxidized AgMgNi alloy attained a strength of up to 387.6 MPa,comparable to that of the internally oxidized AgMg alloy,thereby demonstrating the successful realization of concurrent strengthening and toughening.These results collectively offer a novel approach for the design of high-performance alloys through the synergistic combination of cluster strengthening and grain refinement toughening.
基金Natural Science Foundation of Shanghai(24ZR1400800)he Natural Science Foundation of China(U23A20685,52073058,91963204)+1 种基金the National Key R&D Program of China(2021YFB3701400)Shanghai Sailing Program(23YF1400200)。
文摘High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.
基金Supported by the PetroChina Science and Technology Major Project(2021ZZ01-05)Hainan Merit-based Recruitment Project(ZDYF2024SHFZ147)National Natural Science Foundation of China(NNSC)Project(52474033)。
文摘By systematically reviewing the development status of global carbon dioxide capture,utilization and storage(CCUS)cluster,and comparing domestic and international CCUS industrial models and successful experiences,this study explores the challenges and strategies for the scaled development of the CCUS industry of China.Globally,the CCUS industry has entered a phase of scaled and clustered development.North America has established a system of key technologies in large-scale CO_(2) capture,long-distance pipeline transmission,pipeline network optimization,and large-scale CO_(2) flooding for enhanced oil recovery(CO_(2)-EOR),with relatively mature cluster development and a gradual shift in industrial model from CO_(2)-EOR to geological storage.The CCUS industry of China has developed rapidly across all segments but remains in the early stage of cluster development,facing challenges such as absent business model,insufficient policy support,and technological gaps in core areas.China needs to improve the policy support system to boost enterprises participation across the entire industrial chain,strengthen top-level design and medium-to long-term planning to accelerate demonstration projects construction for whole-process CCUS clusters,advance for a full-chain technological system,including low-cost capture,pipeline optimization and EOR/storage integration technologies,and strengthen personnel training,strengthen discipline construction and university-enterprise research cooperation.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BZ2022007)the National Natural Science Foundation of China(No.92261202)+1 种基金the Ministry of Science and Technology of the People’s Republic of China(No.2021YFE0114800)the Ministry of Science and Higher Education of the Russian Federation(No.075-15-2021-1027).
文摘Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a formidable challenge.In this study,we introduce a novel V-type DA-D-A’emitter,Trz-mCzCbCz,by using a carborane scaffold.This design strategically incorporates carbazole(Cz)and 2,4,6-triphenyl-1,3,5-triazine(Trz)as donor and acceptor moieties,respectively.Theoretical calculations alongside experimental validations affirm the typical TSCT-TADF characteristics of this luminogen.Owing to the unique structural and electronic attributes of carboranes,Trz-mCzCbCz exhibits an orange-red emission,markedly diverging from the traditional blue-to-green emissions observed in classical Cz and Trz-based TADF molecules.Moreover,bright emission in aggregates was observed for Trz-mCzCbCz with absolute photoluminescence quantum yield(PLQY)of up to 88.8%.As such,we have successfully fabricated five organic light-emitting diodes(OLEDs)by utilizing Trz-mCzCbCz as the emitting layer.It is important to note that both the reverse intersystem crossing process and the TADF properties are profoundly influenced by host materials.The fabricated OLED devices reached a maximum external quantum efficiency(EQE)of 12.7%,with an emission peak at 592 nm.This represents the highest recorded efficiency for TSCT-TADF OLEDs employing carborane derivatives as emitting layers.
基金supported by the National Natural Science Foundation of China(No.62271399)the National Key Research and Development Program of China(No.2022YFB1807102)。
文摘For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Vehicles(SRVs)into CP networks,which is called SRV-aided CP.However,the CP system may split into several sub-clusters that cannot be connected with each other in dense urban environments,in which the sub-clusters with few SRVs will suffer from degradation of CP performance.Since Unmanned Aerial Vehicles(UAVs)have been widely used to aid vehicular communications,we intend to utilize UAVs to assist sub-clusters in CP.In this paper,a UAV-aided CP network is constructed to fully utilize information from SRVs.First,the inter-node connection structure among the UAV and vehicles is designed to share available information from SRVs.After that,the clustering optimization strategy is proposed,in which the UAV cooperates with the high-precision sub-cluster to obtain available information from SRVs,and then broadcasts this positioning-related information to other low-precision sub-clusters.Finally,the Locally-Centralized Factor Graph Optimization(LC-FGO)algorithm is designed to fuse positioning information from cooperators.Simulation results indicate that the positioning accuracy of the CP system could be improved by fully utilizing positioning-related information from SRVs.
文摘The legacy of United States cluster munition use in Laos and Cambodia during the Second Indochina War is residual bomblets that unexpectedly detonate years later, killing and injuring children, farmers, and other civilians. Cluster munitions release dozens of smaller bomblets that rain deadly ammunition on troops, armored tanks, and vegetation, effectively striking broad sections of war zone landscapes in one launch. While many bomblets detonate immediately, others fail to detonate and can lie dormant on the ground for years. The primary objectives of this study were to document the long-term consequences and impacts of the US Air Force bombing of Laos and Cambodia during the Second Indochina War (1959 to 1973). The historical lessons learned by United States should be shared with Russia and Ukraine governments and military. These countries need to discontinue the use of cluster bombs to prevent additional people living along the Russia-Ukraine border from having to live and die with the consequences of unexploded ordnance, including cluster bombs, for the next century.
基金supported by the Spanish Ministry of Science and Innovation under Projects PID2022-137680OB-C32 and PID2022-139187OB-I00.
文摘Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions.
文摘An aluminoborate,Na_(2.5)Rb[Al{B_(5)O_(10)}{B_(3)O_(5)}]·0.5NO_(3)·H_(2)O(1),was synthesized under hydrothermal condition,which was built by mixed oxoboron clusters and AlO_(4)tetrahedra.In the structure,the[B_(5)O_(10)]^(5-)and[B_(3)O_(7)]^(5-)clusters are alternately connected to form 1D[B_(8)O_(15)]_(n)^(6n-)chains,which are further linked by AlO_(4)units to form a 2D monolayer with 7‑membered ring and 10‑membered ring windows.Two adjacent monolayers with opposite orientations further form a porous‑layered structure with six channels through B—O—Al bonds.Compound 1 was characterized by single crystal X‑ray diffraction,powder X‑ray diffraction(PXRD),IR spectroscopy,UV‑Vis diffuse reflection spectroscopy,and thermogravimetric analysis(TGA),respectively.UV‑Vis diffuse reflectance analysis indicates that compound 1 shows a wide transparency range with a short cutoff edge of 201 nm,suggesting it may have potential application in UV regions.CCDC:2383923.
文摘Ultrafine,highly dispersed Pt clusters were immobilized onto the Co nanoparticle surfaces by one-step pyrolysis of the precursor Pt(Ⅱ)-encapsulating Co-MOF-74.Owing to the small size effects of Pt clusters as well as the strongly enhanced synergistic interactions between Pt and Co atoms,the obtained Pt-on-Co/C400 catalysts exhib-ited excellent catalytic activity toward the hydrolysis of ammonia borane with an extremely high turnover frequency(TOF)value of 3022 min^(-1)at 303 K.Durability test indicated that the obtained Pt-on-Co/C400 catalysts possessed high catalytic stability,and there were no changes in the catalyst structures and catalytic activities after 10 cycles.
基金supported by the National Natural Science Foundation of China(No.62134004).
文摘To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective cluster centers,a combination of density-based spatial clustering of applications with noise(DBSCAN)and Kmeans++is utilized.Subsequently,long short-term memory(LSTM)is employed to fit and yield optimized cluster centers with temporal information.Lastly,based on the new cluster centers and denoising ratio,a radius threshold is set,and noise points beyond this threshold are removed.The comprehensive denoising metrics F1_score of CBTDNN have achieved 0.8931,0.7735,and 0.9215 on the traffic sequences dataset,pedestrian detection dataset,and turntable dataset,respectively.And these metrics demonstrate improvements of 49.90%,33.07%,19.31%,and 22.97%compared to four contrastive algorithms,namely nearest neighbor(NNb),nearest neighbor with polarity(NNp),Autoencoder,and multilayer perceptron denoising filter(MLPF).These results demonstrate that the proposed method enhances the denoising performance of event-based sensors.
基金supported by the National Key R&D Program of China(2023YFC3304600).
文摘Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024).
文摘K-means uses the sum-of-squared error as the objective function to minimize within-cluster distances.We show that,as a consequence,it also maximizes between-cluster variances.This means that the two measures do not provide complementary information and that using only one is enough.Based on this property,we propose a new objective function called cluster overlap,which is measured intuitively as the proportion of points shared between the clusters.We adopt the new function within k-means and present an algorithm called overlap k-means.It is an alternative way to design a k-means algorithm.A localized variant is also provided by limiting the overlap calculation to the neighboring points.
基金financially supported by the vice chancellor for research and technology of Urmia University
文摘Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study compares the performance of practical iterative reallocation algorithms with model-based clustering algorithms.The data is from forest vegetation in Virginia(United States),the Hyrcanian Forest(Asia),and European beech forests.Practical iterative reallocation algorithms were applied as non-hierarchical methods and Finite Gaussian mixture modeling was used as a model-based clustering method.Due to limitations on dimensionality in model-based clustering,principal coordinates analysis was employed to reduce the dataset’s dimensions.A log transformation was applied to achieve a normal distribution for the pseudo-species data before calculating the Bray-Curtis dissimilarity.The findings indicate that the reallocation of misclassified objects based on silhouette width(OPTSIL)with Flexible-β(-0.25)had the highest mean among the tested clustering algorithms with Silhouette width 1(REMOS1)with Flexible-β(-0.25)second.However,model-based clustering performed poorly.Based on these results,it is recommended using OPTSIL with Flexible-β(-0.25)and REMOS1 with Flexible-β(-0.25)for forest vegetation classification instead of model-based clustering particularly for heterogeneous datasets common in forest vegetation community data.