Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un...Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.展开更多
Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Neverthel...Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications.展开更多
Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and ab...Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and absorption characteristics of the films were also studied. Scanning electron microscopy revealed large crystals and substrate coverage. The orthorhombic-to-tetragonal phase transition temperature was-140 K. The films' exciton binding energy was 77.6 ± 10.9 meV and the energy of optical phonons was 38.8 ± 2.5 meV. These results suggest that perovskite CH3NH3Pb I(3-x)Clx films have excellent optoelectronic characteristics which further suggests their potential usage in perovskitebased optoelectronic devices.展开更多
The distribution of remaining oil is often described qualitatively. The remaining oil distributed in the whole reservoir is calculated according to the characteristics of the space distribution of the saturation of re...The distribution of remaining oil is often described qualitatively. The remaining oil distributed in the whole reservoir is calculated according to the characteristics of the space distribution of the saturation of remaining oil. Logging data are required to accomplish this. However, many such projects cannot be completed. Since the old study of remaining oil distribution could not be quantified efficiently, the "dynamic two-step method" is presented. Firstly, the water cut of every flow unit in one well at one time is calculated according to the comprehensive water cut of a single well at one time. Secondly, the remaining oil saturation of the flow unit of the well at one time is calculated based on the water cut of the flow unit at a given time. The results show that "dynamic two-step method" has characteristics of simplicity and convenience, and is especially suitable for the study of remaining oil distribution at high water-cut stage. The distribution of remaining oil presented banding and potato form, remaining oil was relatively concentrated in faultage neighborhood and imperfect well netting position, and the net thickness of the place was great. This proposal can provide an effective way to forecast remaining oil distribution and enhance oil recovery, especially applied at the high water-cut stage.展开更多
SnO2 doped with Y were prepared by co-precipitation method and tested in lithium-ion cells. The structure and morphology of the materials were characterized by X-ray diffraction (XRD) and transmission electron microsc...SnO2 doped with Y were prepared by co-precipitation method and tested in lithium-ion cells. The structure and morphology of the materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns presented that the all the as-prepared materials had tetragonal rutile structure but a second phase (Y2O3) was observed when Y content reached 4%. TEM micrograph indicated that Y doped SnO2 had a small particle size ranging from 20 to 25 nm. The electrochemical properties for an anode active material in lithium-ion batteries were investigated at room temperature, including the observed capacity involved in the first-discharge and the reversible capacity values during subsequent charge-discharge cycles. The as-prepared Y-doped SnO2 exhibited promising electrochemical properties as anodes for lithium-ion batteries.展开更多
ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis ...ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.展开更多
In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.1...In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.展开更多
Under the assumption that the nonlinear operator has Lipschitz continuous divided differences for the first order,we obtain an estimate of the radius of the convergence ball for the two-step secant method.Moreover,we ...Under the assumption that the nonlinear operator has Lipschitz continuous divided differences for the first order,we obtain an estimate of the radius of the convergence ball for the two-step secant method.Moreover,we also provide an error estimate that matches the convergence order of the two-step secant method.At last,we give an application of the proposed theorem.展开更多
Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method mor...Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method more easily controls the crystallization rate and is suitable for preparing large-area per-ovskite devices.However,the residual low-conductivity iodide layer in the two-step method can affect carrier transport and device stability,and the different crystallization rates of Sn-and Pb-based per-ovskites may result in poor film quality.Therefore,Sn-Pb mixed perovskites are mainly prepared by a one-step method.Herein,a MAPb_(0.5)Sn_(0.5)I_(3)-based self-powered photodetector without a hole transport layer is fabricated by a two-step method.By adjusting the concentration of the ascorbic acid(AA)addi-tive,the final perovskite film exhibited a pure phase without residues,and the optimal device exhibited a high responsivity(0.276 A W^(-1)),large specific detectivity(2.38×10^(12) Jones),and enhanced stability.This enhancement is mainly attributed to the inhibition of Sn2+oxidation,the control of crystal growth,and the sufficient reaction between organic ammonium salts and bottom halides due to the AA-induced pore structure.展开更多
The Adomian decomposition method (ADM) can be used to solve a wide range of problems and usually gets the solution in a series form. In this paper, we propose two-step Adomian Decomposition Method (TSAM) for nonlinear...The Adomian decomposition method (ADM) can be used to solve a wide range of problems and usually gets the solution in a series form. In this paper, we propose two-step Adomian Decomposition Method (TSAM) for nonlinear integro-differential equations that will facilitate the calculations. In this modification, compared to the standard Adomian decomposition method, the size of calculations was reduced. This modification also avoids computing Adomian polynomials. Numerical results are given to show the efficiency and performance of this method.展开更多
The urgent demand for clean energy solutions has intensified the search for advanced storage materials,with rechargeable alkali-ion batteries(AIBs)playing a pivotal role in electrochemical energy storage.Enhancing ele...The urgent demand for clean energy solutions has intensified the search for advanced storage materials,with rechargeable alkali-ion batteries(AIBs)playing a pivotal role in electrochemical energy storage.Enhancing electrode performance is critical to addressing the increasing need for high-energy and high-power AIBs.Next-generation anode materials face significant challenges,including limited energy storage capacities and complex reaction mechanisms that complicate structural modeling.Sn-based materials have emerged as promising candidates for AIBs due to their inherent advantages.Recent research has increasingly focused on the development of heterojunctions as a strategy to enhance the performance of Sn-based anode materials.Despite significant advances in this field,comprehensive reviews summarizing the latest developments are still sparse.This review provides a detailed overview of recent progress in Sn-based heterojunction-type anode materials.It begins with an explanation of the concept of heterojunctions,including their fabrication,characterization,and classification.Cutting-edge research on Sn-based heterojunction-type anodes for AIBs is highlighted.Finally,the review summarizes the latest advancements in heterojunction technology and discusses future directions for research and development in this area.展开更多
Aqueous zinc-ion batteries encounter issues with the formation of Zn dendrites and parasitic reactions at Zn anodes.To address these issues,coating Zn anodes with two-dimensional(2D)nanocarbon materials,such as graphe...Aqueous zinc-ion batteries encounter issues with the formation of Zn dendrites and parasitic reactions at Zn anodes.To address these issues,coating Zn anodes with two-dimensional(2D)nanocarbon materials,such as graphene,has proven effective in ensuring uniform current distribution and facilitating charge transfer.While direct growth of 2D nanocarbon on Zn substrates offers significant advantages,it remains challenging due to Zn's low melting point(420℃).In this study,as a first proof-ofconcept,a unique sonochemical route was developed to directly grow crystalline-amorphous mixed 2D nanocarbon films,named“Leopard-patterned graphene,”on Zn substrates.This unique structure provides uniform nucleation sites while maintaining high Zn^(2+) ion permeability,mitigating dendrite formation.In Zn symmetric coin cell tests,the Zn electrodes coated with Leopard-patterned graphene maintained stable cycling for over 2000 h at a constant current density of 3mA cm^(−2).This study introduces an innovative approach for bottom-up synthesis of 2D nanocarbon on Zn substrates under ambient conditions and demonstrates its potential to address critical challenges in Zn-ion battery performance.The findings provide insights into advanced electrode design strategies for next-generation energy storage devices.展开更多
Silicon(Si)-based anodes,where Si serves as the active material,have garnered significant attention due to their potential to achieve high electric capacity in lithium-ion batteries(LIBs).A key challenge with Si-based...Silicon(Si)-based anodes,where Si serves as the active material,have garnered significant attention due to their potential to achieve high electric capacity in lithium-ion batteries(LIBs).A key challenge with Si-based anodes is their susceptibility to create in-plane cracks caused by stresses from the manufacturing process and cyclic charging,which ultimately shortens battery life and reduces the overall electrochemical capacity.To address this issue,a refined microstructural design of the active material layer is in pressing need to enhance both the performance and longevity of LIBs.We successfully applied the Oyane failure criterion,which models ductile failure under stress triaxiality,to simulate crack initiation and propagation in the binder matrix containing Si particles in the finite element modeling.Given the non-linear plastic deformation of the binder,this criterion was formulated based on cumulative strain increments.The computational results of microcrack formation within the active material layer under uniaxial tension were then validated by the experimental observations.Furthermore,we developed several models with varied particle arrangements,comparing each simulated crack path to actual microstructural images obtained via scanning electron microscopy.The findings confirm the accuracy of the model,underlying its promising application in optimizing the microstructure of Si-based anodes for enhanced LIB performance and durability.展开更多
The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationsh...The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationship between the diffusion coefficient along the direction of z-axis which is normal to the Mg/Zn interface and temperature was investigated, and the AF's impact on the diffusion constant (D0) and activation energy (Q^*) was studied. Then, two steps were taken to simulate the atomic diffusion process and the formation of new phases: one for acceleration and the other for equilibration. The results show that: the Arrhenius equation works well for the description of Dz with different accelerating factors; the AF has no effect on the diffusion constant Do in the case of no phase transition; and the relationship between Q* and Q conforms to Q^*=Q/A. Then, the new Arrhenius equation for AFHD is successfully constructed as Dz=Doexp[-Q/(ART)]. Meanwhile, the authentic equilibrium conformations at any dynamic moment can only be reproduced by the equilibration simulation of the HD-simulated configurations. Key words: accelerating factor method; Arrhenius equation; two-steps scheme; Mg/Zn interface; hyperdynamic simulation展开更多
Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characte...Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase.展开更多
Highly ordered nanowire/tube arrays of Ni0.5Zn0.5Fe2O4were fabricated by the sol-gel method in the pores of anodic alumina membrane (AAM). Whether nanowires or nanotubes were fabricated depends on immersion time. Th...Highly ordered nanowire/tube arrays of Ni0.5Zn0.5Fe2O4were fabricated by the sol-gel method in the pores of anodic alumina membrane (AAM). Whether nanowires or nanotubes were fabricated depends on immersion time. The immersion time was 15- 40 s for nanotubes and over 60 s for nanowires. The topography and crystalline structure of the nanowire arrays were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). It was found that the length and diameter of the Ni0.5Zn0.5Fe2O4 nanowires are related to the thickness of the AAM and the diameter of the pores. The results indicated that the Ni0.5Zn0.5Fe2O4 nanowires are uniform and parallel to each other.展开更多
In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficientl...In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%.展开更多
The paper aims to demonstrate the system of SANYI biogas power generation by two-step method which can produce methane and generate electricity effectively and stably.So it can be stable synchronization meshwork energ...The paper aims to demonstrate the system of SANYI biogas power generation by two-step method which can produce methane and generate electricity effectively and stably.So it can be stable synchronization meshwork energy source establishment and provide references to develop an effective and stable project of producing methane and generating electricity.展开更多
A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of tw...A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of two steps, namely single-crystal nucleation and growth. Prior to the fabrication of the well-faceted, large crystal diamond, an investigation was made into the nucleation and growth of the diamond which were affected by the O2 concentration and substrate temperature. Deposited diamond crystals were characterized by scanning electron microscopy and micro-Raman spectroscopy. The results showed that the conditions of single-crystal nucleation were appropriate when the ratio of H2/CH4/O2 was about 200/7.0/2.0, while the sub- strate temperature Ts of 1000℃ to 1050℃ was the appropriate range for single-crystal diamond growth. Under the optimum parameters, a well-faeeted large crystal diamond was obtained.展开更多
基金supported by the National Natural Science Foundation of China(No.92252201)the Fundamental Research Funds for the Central Universitiesthe Academic Excellence Foundation of Beihang University(BUAA)for PhD Students。
文摘Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.
基金supported by the National Key Research and Development Program of China(2020YFB1713500)the Chinese 02 Special Fund(2017ZX02408003)+2 种基金the Open Fund of National Joint Engineering Research Center for abrasion control and molding of metal materials(HKDNM201807)the Student Research Training Plan of Henan University of Science and Technology(2020026)the National Undergraduate Innovation and Entrepreneurship Training Program(202010464031,202110464005)。
文摘Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications.
基金supported by the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun City,China(Grant No.12ZX68)
文摘Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and absorption characteristics of the films were also studied. Scanning electron microscopy revealed large crystals and substrate coverage. The orthorhombic-to-tetragonal phase transition temperature was-140 K. The films' exciton binding energy was 77.6 ± 10.9 meV and the energy of optical phonons was 38.8 ± 2.5 meV. These results suggest that perovskite CH3NH3Pb I(3-x)Clx films have excellent optoelectronic characteristics which further suggests their potential usage in perovskitebased optoelectronic devices.
文摘The distribution of remaining oil is often described qualitatively. The remaining oil distributed in the whole reservoir is calculated according to the characteristics of the space distribution of the saturation of remaining oil. Logging data are required to accomplish this. However, many such projects cannot be completed. Since the old study of remaining oil distribution could not be quantified efficiently, the "dynamic two-step method" is presented. Firstly, the water cut of every flow unit in one well at one time is calculated according to the comprehensive water cut of a single well at one time. Secondly, the remaining oil saturation of the flow unit of the well at one time is calculated based on the water cut of the flow unit at a given time. The results show that "dynamic two-step method" has characteristics of simplicity and convenience, and is especially suitable for the study of remaining oil distribution at high water-cut stage. The distribution of remaining oil presented banding and potato form, remaining oil was relatively concentrated in faultage neighborhood and imperfect well netting position, and the net thickness of the place was great. This proposal can provide an effective way to forecast remaining oil distribution and enhance oil recovery, especially applied at the high water-cut stage.
基金NSFC (20471055)Henan Outstanding Youth Science Fund (0612002700)
文摘SnO2 doped with Y were prepared by co-precipitation method and tested in lithium-ion cells. The structure and morphology of the materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns presented that the all the as-prepared materials had tetragonal rutile structure but a second phase (Y2O3) was observed when Y content reached 4%. TEM micrograph indicated that Y doped SnO2 had a small particle size ranging from 20 to 25 nm. The electrochemical properties for an anode active material in lithium-ion batteries were investigated at room temperature, including the observed capacity involved in the first-discharge and the reversible capacity values during subsequent charge-discharge cycles. The as-prepared Y-doped SnO2 exhibited promising electrochemical properties as anodes for lithium-ion batteries.
基金supported by the Natural Science Foundation of China(No.21174114)the Ministry of Education Plan for Yangtze River Scholar and Innovation Team Development(No.IRT1177)+2 种基金Scientific and Technical Plan Project of Gansu Province(No. 1204GKCA006)the Natural Science Foundation of Gansu Province (No.1010RJZA024)Scientific and Technical Innovation Project of Northwest Normal University(No.nwnu-kjcxgc-03-63)
文摘ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.
基金supported by the Scientific Computing Research Innovation Team of Guangdong Province(no.2021KCXTD052)the Science and Technology Development Fund,Macao SAR(no.0096/2022/A,0151/2022/A)+3 种基金University of Macao(no.MYRG2020-00035-FST,MYRG2022-00076-FST)the Guangdong Key Construction Discipline Research Capacity Enhancement Project(no.2022ZDJS049)Technology Planning Project of Shaoguan(no.210716094530390)the ScienceFoundation of Shaoguan University(no.SZ2020KJ01).
文摘In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.
基金supported by National Natural Science Foundation of China(11771393,11371320,11632015)Zhejiang Natural Science Foundation(LZ14A010002,LQ18A010008)Scientific Research Fund of Zhejiang Provincial Education Department(FX2016073)
文摘Under the assumption that the nonlinear operator has Lipschitz continuous divided differences for the first order,we obtain an estimate of the radius of the convergence ball for the two-step secant method.Moreover,we also provide an error estimate that matches the convergence order of the two-step secant method.At last,we give an application of the proposed theorem.
基金supported by the National Natural Science Foun-dation of China(Nos.52025028,52332008,52372214,52202273,and U22A20137)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method more easily controls the crystallization rate and is suitable for preparing large-area per-ovskite devices.However,the residual low-conductivity iodide layer in the two-step method can affect carrier transport and device stability,and the different crystallization rates of Sn-and Pb-based per-ovskites may result in poor film quality.Therefore,Sn-Pb mixed perovskites are mainly prepared by a one-step method.Herein,a MAPb_(0.5)Sn_(0.5)I_(3)-based self-powered photodetector without a hole transport layer is fabricated by a two-step method.By adjusting the concentration of the ascorbic acid(AA)addi-tive,the final perovskite film exhibited a pure phase without residues,and the optimal device exhibited a high responsivity(0.276 A W^(-1)),large specific detectivity(2.38×10^(12) Jones),and enhanced stability.This enhancement is mainly attributed to the inhibition of Sn2+oxidation,the control of crystal growth,and the sufficient reaction between organic ammonium salts and bottom halides due to the AA-induced pore structure.
文摘The Adomian decomposition method (ADM) can be used to solve a wide range of problems and usually gets the solution in a series form. In this paper, we propose two-step Adomian Decomposition Method (TSAM) for nonlinear integro-differential equations that will facilitate the calculations. In this modification, compared to the standard Adomian decomposition method, the size of calculations was reduced. This modification also avoids computing Adomian polynomials. Numerical results are given to show the efficiency and performance of this method.
文摘The urgent demand for clean energy solutions has intensified the search for advanced storage materials,with rechargeable alkali-ion batteries(AIBs)playing a pivotal role in electrochemical energy storage.Enhancing electrode performance is critical to addressing the increasing need for high-energy and high-power AIBs.Next-generation anode materials face significant challenges,including limited energy storage capacities and complex reaction mechanisms that complicate structural modeling.Sn-based materials have emerged as promising candidates for AIBs due to their inherent advantages.Recent research has increasingly focused on the development of heterojunctions as a strategy to enhance the performance of Sn-based anode materials.Despite significant advances in this field,comprehensive reviews summarizing the latest developments are still sparse.This review provides a detailed overview of recent progress in Sn-based heterojunction-type anode materials.It begins with an explanation of the concept of heterojunctions,including their fabrication,characterization,and classification.Cutting-edge research on Sn-based heterojunction-type anodes for AIBs is highlighted.Finally,the review summarizes the latest advancements in heterojunction technology and discusses future directions for research and development in this area.
基金supported by the Korean Institute of Energy Technology Evaluation and Planning (KETEP),Korean Government (MOTIE)(RS-2023-00303581)the National Research Foundation of Korea (NRF)the Ministry of Science and ICT (MIST)(Project Number:RS-2025-02223634)
文摘Aqueous zinc-ion batteries encounter issues with the formation of Zn dendrites and parasitic reactions at Zn anodes.To address these issues,coating Zn anodes with two-dimensional(2D)nanocarbon materials,such as graphene,has proven effective in ensuring uniform current distribution and facilitating charge transfer.While direct growth of 2D nanocarbon on Zn substrates offers significant advantages,it remains challenging due to Zn's low melting point(420℃).In this study,as a first proof-ofconcept,a unique sonochemical route was developed to directly grow crystalline-amorphous mixed 2D nanocarbon films,named“Leopard-patterned graphene,”on Zn substrates.This unique structure provides uniform nucleation sites while maintaining high Zn^(2+) ion permeability,mitigating dendrite formation.In Zn symmetric coin cell tests,the Zn electrodes coated with Leopard-patterned graphene maintained stable cycling for over 2000 h at a constant current density of 3mA cm^(−2).This study introduces an innovative approach for bottom-up synthesis of 2D nanocarbon on Zn substrates under ambient conditions and demonstrates its potential to address critical challenges in Zn-ion battery performance.The findings provide insights into advanced electrode design strategies for next-generation energy storage devices.
基金support of JSPS KAKENHI(Grant No.21H01217)from the Japan Society for the Promotion of Science.
文摘Silicon(Si)-based anodes,where Si serves as the active material,have garnered significant attention due to their potential to achieve high electric capacity in lithium-ion batteries(LIBs).A key challenge with Si-based anodes is their susceptibility to create in-plane cracks caused by stresses from the manufacturing process and cyclic charging,which ultimately shortens battery life and reduces the overall electrochemical capacity.To address this issue,a refined microstructural design of the active material layer is in pressing need to enhance both the performance and longevity of LIBs.We successfully applied the Oyane failure criterion,which models ductile failure under stress triaxiality,to simulate crack initiation and propagation in the binder matrix containing Si particles in the finite element modeling.Given the non-linear plastic deformation of the binder,this criterion was formulated based on cumulative strain increments.The computational results of microcrack formation within the active material layer under uniaxial tension were then validated by the experimental observations.Furthermore,we developed several models with varied particle arrangements,comparing each simulated crack path to actual microstructural images obtained via scanning electron microscopy.The findings confirm the accuracy of the model,underlying its promising application in optimizing the microstructure of Si-based anodes for enhanced LIB performance and durability.
基金Project (2012CB722805) supported by the National Basic Research Program of ChinaProjects (50974083, 51174131) supported by the National Natural Science Foundation of China+1 种基金Project (50774112) supported by the Joint Fund of NSFC and Baosteel, ChinaProject(07QA4021) supported by the Shanghai "Phosphor" Science Foundation, China
文摘The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationship between the diffusion coefficient along the direction of z-axis which is normal to the Mg/Zn interface and temperature was investigated, and the AF's impact on the diffusion constant (D0) and activation energy (Q^*) was studied. Then, two steps were taken to simulate the atomic diffusion process and the formation of new phases: one for acceleration and the other for equilibration. The results show that: the Arrhenius equation works well for the description of Dz with different accelerating factors; the AF has no effect on the diffusion constant Do in the case of no phase transition; and the relationship between Q* and Q conforms to Q^*=Q/A. Then, the new Arrhenius equation for AFHD is successfully constructed as Dz=Doexp[-Q/(ART)]. Meanwhile, the authentic equilibrium conformations at any dynamic moment can only be reproduced by the equilibration simulation of the HD-simulated configurations. Key words: accelerating factor method; Arrhenius equation; two-steps scheme; Mg/Zn interface; hyperdynamic simulation
文摘Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase.
文摘Highly ordered nanowire/tube arrays of Ni0.5Zn0.5Fe2O4were fabricated by the sol-gel method in the pores of anodic alumina membrane (AAM). Whether nanowires or nanotubes were fabricated depends on immersion time. The immersion time was 15- 40 s for nanotubes and over 60 s for nanowires. The topography and crystalline structure of the nanowire arrays were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). It was found that the length and diameter of the Ni0.5Zn0.5Fe2O4 nanowires are related to the thickness of the AAM and the diameter of the pores. The results indicated that the Ni0.5Zn0.5Fe2O4 nanowires are uniform and parallel to each other.
基金supported by the State Key Basic Research Program of PRC(2011CB935903)the National Natural Science Foundation of China(No.20925312)Shanghai Science Technology Committee(13JC1407900)
文摘In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%.
文摘The paper aims to demonstrate the system of SANYI biogas power generation by two-step method which can produce methane and generate electricity effectively and stably.So it can be stable synchronization meshwork energy source establishment and provide references to develop an effective and stable project of producing methane and generating electricity.
基金supported by the Natural Science Foundation of Hubei Province of China(2008CDB255)the Educational Commission of Hubei Province of China(No.Q20081505)the Key Laboratory for Green Chemical Process of the Ministry of Education of China (No.RGCT200801)
文摘A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of two steps, namely single-crystal nucleation and growth. Prior to the fabrication of the well-faceted, large crystal diamond, an investigation was made into the nucleation and growth of the diamond which were affected by the O2 concentration and substrate temperature. Deposited diamond crystals were characterized by scanning electron microscopy and micro-Raman spectroscopy. The results showed that the conditions of single-crystal nucleation were appropriate when the ratio of H2/CH4/O2 was about 200/7.0/2.0, while the sub- strate temperature Ts of 1000℃ to 1050℃ was the appropriate range for single-crystal diamond growth. Under the optimum parameters, a well-faeeted large crystal diamond was obtained.