期刊文献+
共找到70,625篇文章
< 1 2 250 >
每页显示 20 50 100
Study on Optimization of Two-Stage Phase Change Heat Storage Coupled Solar-Air Source Heat Pump Heating System in Severe Cold Region
1
作者 Xueli Wang Yan Jia Degong Zuo 《Energy Engineering》 2025年第4期1603-1627,共25页
The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-... The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-air source heat pump heating system structure that is specifically designed for such regions.The two-stage heat storage device in this heating system expands the storage temperature range of solar heat.The utilization of the two-stage heat storage device not onlymakes up for the instability of the solar heating system,but can also directlymeet the building heating temperature,and can reduce the influence of low-temperature outdoor environments in severe cold regions on the heating performance of the air source heat pump by using solar energy.Therefore,the two-stage phase change heat storage coupled to the solar energy-air source heat pump heating system effectively improves the utilization rate of solar energy.A numerical model of the system components and their integration was developed using TRNSYS software in this study,and various performance aspects of the system were simulated and analyzed.The simulation results demonstrated that the two-stage heat storage device can effectively store solar energy,enabling its hierarchical utilization.The low-temperature solar energy stored by the two-stage phase change heat storage device enhances the coefficient of performance of the air source heat pump by 11.1%in severe cold conditions.Using the Hooke-Jeeves optimization method,the annual cost and carbon emissions are taken as optimization objectives,with the optimized solar heat supply accounting for 52.5%.This study offers valuable insights into operational strategies and site selection for engineering applications,providing a solid theoretical foundation for the widespread implementation of this system in severe cold regions. 展开更多
关键词 two-stage heat storage building heating Hooke-Jeeves optimization phase change heat storage device severe cold region
在线阅读 下载PDF
Two-Stage capacity allocation optimization method for user-level integrated energy systems considering user satisfaction and thermal inertia
2
作者 Shunyu Li Jing Zhang +5 位作者 Yu He Gang Lv Ying Liu Xiangxie Hu Zhiyang Wang Xuan Ao 《Global Energy Interconnection》 2025年第2期300-315,共16页
Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing r... Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing renewable-energy consumption and supporting sustainable-energy systems.User participation is central to demand response;however,many users are not inclined to engage actively;therefore,the full potential of demand response remains unrealized.User satisfaction must be prioritized in demand-response assessments.This study proposed a two-stage,capacity-optimization configuration method for user-level energy systems con-sidering thermal inertia and user satisfaction.This method addresses load coordination and complementary issues within the IES and seeks to minimize the annual,total cost for determining equipment capacity configurations while introducing models for system thermal inertia and user satisfaction.Indoor heating is adjusted,for optimizing device output and load profiles,with a focus on typical,daily,economic,and environmental objectives.The studyfindings indicate that the system thermal inertia optimizes energy-system scheduling considering user satisfaction.This optimization mitigates environmental concerns and enhances clean-energy integration. 展开更多
关键词 Integrated energy system Demand response User satisfaction Thermal inertia two-stage capacity-optimization configuration method Clean energy integration
在线阅读 下载PDF
Two-Stage Optimal Dispatching of Electricity-Hydrogen-Waste Multi-Energy System with Phase Change Material Thermal Storage
3
作者 Linwei Yao Xiangning Lin +1 位作者 Huashen He Jiahui Yang 《Energy Engineering》 2025年第8期3285-3308,共24页
In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integra... In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integrated with phase change material(PCM)thermal storage is proposed.First,a thermal energy management framework is constructed,combining PCM thermal storage with the alkaline electrolyzer(AE)waste heat recovery and the heat pump(HP),while establishing a PCM-driven waste drying system to enhance the efficiency of waste incineration power generation.Next,a flue gas treatment method based on purification-separation-storage coordination is adopted,achieving spatiotemporal decoupling between waste incineration and flue gas treatment.Subsequently,a two-stage optimal dispatching strategy for the multi-energy system is developed:the first stage establishes a dayahead economic dispatch model with the objective of minimizing net system costs,while the second stage introduces model predictive control(MPC)to realize intraday rolling optimization.Finally,The optimal dispatching strategies under different scenarios are obtained using the Gurobi solver,followed by a comparative analysis of the optimized operational outcomes.Simulation results demonstrate that the proposed system optimizes the output and operational states of each unit,simultaneously reducing carbon trading costs while increasing electricity sales revenue.The proposed scheduling strategy demonstrates effective grid peak-shaving functionality,thereby simultaneously improving the system’s economic performance and operational flexibility while providing an innovative technical pathway for municipal solid waste(MSW)resource utilization and low-carbon transformation of energy systems. 展开更多
关键词 Waste incineration power plant waste drying phase change material thermal storage alkaline electrolyzer waste heat recovery two-stage optimal dispatching
在线阅读 下载PDF
Advanced landfill leachate treatment using a two-stage UASB-SBR system at low temperature 被引量:26
4
作者 Hongwei Sun,Qing Yang,Yongzhen Peng,Xiaoning Shi,Shuying Wang,Shujun Zhang Key Laboratory of Beijing Water Quality Science and Water Envirocnnment Recovery Engineering,Beijing University of Technology,Beijing 100124,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第4期481-485,共5页
A two-stage upflow anaerobic sludge blanket (UASB) and sequencing batch reactor (SBR) system was introduced to treat landfill leachate for advanced removal of COD and nitrogen at low temperature. In order to impro... A two-stage upflow anaerobic sludge blanket (UASB) and sequencing batch reactor (SBR) system was introduced to treat landfill leachate for advanced removal of COD and nitrogen at low temperature. In order to improve the total nitrogen (TN) removal efficiency and to reduce the COD requirement for denitrification, the raw leachate with recycled SBR nitrification supematant was pumped into the first-stage UASB (UASB1) to achieve simultaneous denitrification and methanogenesis. The results showed that UASB1 played an important role in COD removal and UASB2 and SBR further enhanced the nutrient removal efficiency. When the organic loading rates of UASB1, UASB2 and SBR were 11.95, 1.63 and 1.29 kg COD/(m^3.day), respectively, the total COD removal efficiency of the whole system reached 96.7%. The SBR acted as the real undertaker for NH4^+-N removal due to aerobic nitrification. The system obtained about 99.7% of NH4^+-N removal efficiency at relatively low temperature (14.9-10.9℃). More than 98.3% TN was removed through complete denitrification in UASB 1 and SBR. In addition, temperature had a significant effect on the rates of nitrification and denitrification rather than the removal of TN and NH4^+-N once the complete nitrification and denitrification were achieved. 展开更多
关键词 landfill leachate two-stage UASB-SBR advanced nitrogen removal low temperature NITRIFICATION DENITRIFICATION
在线阅读 下载PDF
A novel constitutive model for two-stage creep aging process of 7B50 aluminum alloy and its application in springback prediction 被引量:1
5
作者 Ling-zhi XU Can-yu TONG +7 位作者 Chang-zhi LIU Li-hua ZHAN Ming-hui HUANG You-liang YANG Dong-yang YAN Jian-hua YIN Hui XIA Yong-qian XU 《Transactions of Nonferrous Metals Society of China》 2025年第3期734-748,共15页
A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary ... A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary micro-variables evolution at different temperatures and their interaction.The dislocation density was incorporated into the model to capture the effect of creep deformation on precipitation.Quantitative transmission electron microscopy and experimental data obtained from a previous study were used to calibrate the model.Subsequently,the developed constitutive model was implemented in the finite element(FE)software ABAQUS via the user subroutines for TSCA process simulation and the springback prediction of an integral panel.A TSCA test was performed.The result shows that the maximum radius deviation between the formed plate and the simulation results is less than 0.4 mm,thus validating the effectiveness of the developed constitutive model and FE model. 展开更多
关键词 two-stage creep aging process bimodal precipitation constitutive modeling springback prediction Al−Zn−Mg−Cu alloy
在线阅读 下载PDF
Unified Neural Lexical Analysis Via Two-Stage Span Tagging
6
作者 Yantuan Xian Yefen Zhu +3 位作者 Zhentao Yu Yuxin Huang Junjun Guo Yan Xiang 《CAAI Transactions on Intelligence Technology》 2025年第4期1254-1267,共14页
Lexical analysis is a fundamental task in natural language processing,which involves several subtasks,such as word segmentation(WS),part-of-speech(POS)tagging,and named entity recognition(NER).Recent works have shown ... Lexical analysis is a fundamental task in natural language processing,which involves several subtasks,such as word segmentation(WS),part-of-speech(POS)tagging,and named entity recognition(NER).Recent works have shown that taking advantage of relatedness between these subtasks can be beneficial.This paper proposes a unified neural framework to address these subtasks simultaneously.Apart from the sequence tagging paradigm,the proposed method tackles the multitask lexical analysis via two-stage sequence span classification.Firstly,the model detects the word and named entity boundaries by multilabel classification over character spans in a sentence.Then,the authors assign POS labels and entity labels for words and named entities by multi-class classification,respectively.Furthermore,a Gated Task Transformation(GTT)is proposed to encourage the model to share valuable features between tasks.The performance of the proposed model was evaluated on Chinese and Thai public datasets,demonstrating state-of-the-art results. 展开更多
关键词 gated task transformation lexical analysis multitask two-stage
在线阅读 下载PDF
Enhanced oxidation mechanism of arsenopyrite in two-stage oxidation process applying bio-oxidation waste solution
7
作者 ZHANG Shi-qi YANG Hong-ying +3 位作者 TONG Lin-lin CHEN Guo-min KANG Guo-ai ZHAO Zhi-xin 《Journal of Central South University》 2025年第1期94-105,共12页
Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mec... Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mechanism of arsenopyrite by evaluating the effects of physical and chemical changes of arsenopyrite in BOS chemical oxidation stage on mineral dissolution kinetics,as well as microbial growth activity and community structure composition in bio-oxidation stage.The results showed that the chemical oxidation contributed to destroying the physical and chemical structure of arsenopyrite surface and reducing the particle size,and led to the formation of nitrogenous substances on mineral surface.These chemical oxidation behaviors effectively promoted Fe^(3+)cycling in the bio-oxidation system and weakened the inhibitory effect of the sulfur film on ionic diffusion,thereby enhancing the dissolution kinetics of the arsenopyrite.Therefore,the bio-oxidation efficiency of arsenopyrite was significantly increased in the two-stage oxidation process.After 18 d,the two-stage oxidation process achieved total extraction rates of(88.8±2.0)%,(86.7±1.3)%,and(74.7±3.0)%for As,Fe,and S elements,respectively.These values represented a significant increase of(50.8±3.4)%,(47.1±2.7)%,and(46.0±0.7)%,respectively,compared to the one-stage bio-oxidation process. 展开更多
关键词 BIO-OXIDATION ARSENOPYRITE two-stage oxidation process microbial community kinetics
在线阅读 下载PDF
Decoupling economic growth from industrial SO_(2)emissions in China:A two-stage decomposition approach
8
作者 Yuanna Tian Yizhong Wang +3 位作者 Ye Hang Dequn Zhou Xiurong Hu Qunwei Wang 《Chinese Journal of Population,Resources and Environment》 2025年第1期49-61,共13页
Exploring the factors driving the decoupling of China’s sulfur dioxide(SO_(2))emissions from economic growth(DEI)is crucial for achieving sustainable development.By analyzing the decoupling indicators and driving fac... Exploring the factors driving the decoupling of China’s sulfur dioxide(SO_(2))emissions from economic growth(DEI)is crucial for achieving sustainable development.By analyzing the decoupling indicators and driving factors at both the generation and treatment stages of SO_(2),more effective targeted mitigation strategies can be developed.We employ the Tapio decoupling model and propose a two-stage method to examine the decoupling issues related to SO_(2).Our findings indicate that:①DEI shows a steady and significant improvement,with SO_(2)emission intensity identified as the primary driver.②for the decoupling of economic growth and SO_(2)generation,energy scale serves as the largest stimulator,while the effect of energy intensity changes from negative to positive,and pollution intensity is first positive and then negative.③For the decoupling of SO_(2)generation and SO_(2)removal,treatment efficiency leads as the largest promoter,followed by treatment intensity.Based on these results,this study recommends that China focuses more on enhancing clean energy utilization and the effectiveness of treatment processes. 展开更多
关键词 Driving factors Tapio decoupling indicator LMDI decomposition two-stage method
在线阅读 下载PDF
Impact of introducing custom-made articulating spacers:A retrospective cohort study on two protocols for two-stage hip revision
9
作者 Marijn H Stelwagen Jakob Van Oldenrijk +3 位作者 Peter D Croughs Erlangga Yusuf P Koen Bos Ewout S Veltman 《World Journal of Orthopedics》 2025年第10期42-52,共11页
BACKGROUND Two-stage revision is the most common treatment for chronic periprosthetic joint infection of the hip,involving a resection arthroplasty with or without placement of an antibiotic-loaded spacer,followed by ... BACKGROUND Two-stage revision is the most common treatment for chronic periprosthetic joint infection of the hip,involving a resection arthroplasty with or without placement of an antibiotic-loaded spacer,followed by antibiotic therapy before reimplantation.AIM To compare the outcomes and complications of two consecutive treatment protocols for two-stage revision arthroplasty of the infected hip:One using Girdlestone with an antibiotic holiday,the other using custom-made articulating spacers(CUMARS)without an antibiotic holiday.METHODS In this retrospective study,two consecutive cohorts were compared.Group A(2017-2020)underwent two-stage revision with a Girdlestone and an antibiotic holiday before reimplantation,while Group B(2020-2023)received CUMARS whenever possible,and no antibiotic holiday,or a Girdlestone if indicated.The primary outcome was successful infection eradication after one year.Secondary outcomes included surgical duration,length of hospital stay,weight-bearing allowance,discharge destination,and complications.RESULTS A total of 98 patients were included:39 patients in Group A and 59 patients in Group B.Successful infection eradication after one year was achieved in 69%of Group A and 83%of Group B(P=0.164).Patients in Group B were more frequently allowed to bear weight(64%vs 18%,P<0.001),had a shorter in-hospital stay(9 vs 16 days,P<0.001),and were more often discharged home after the first surgery(48%vs 24%,P=0.048).No significant differences were found in(mechanical)complications.CONCLUSION A protocol including CUMARS is a safe and effective treatment,offering faster recovery,shorter length of hospital stay,and enabling more patients to return home during the interval.This reduces strain on patients and the healthcare system,potentially saving costs,without compromising infection control or increasing(mechanical)complications. 展开更多
关键词 Periprosthetic joint infection two-stage revision Girdlestone Custom-made articulating spacer SPACER Antibiotic holiday
暂未订购
A two-stage scheduling algorithm based on pointer network with attention mechanism for micro-nano Earth observation satellite constellation
10
作者 Hai LI Yuanhao LIU +5 位作者 Boyu DENG Yongjun LI Xin LI Yu LI Taijiang ZHANG Shanghong ZHAO 《Chinese Journal of Aeronautics》 2025年第8期433-448,共16页
Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growin... Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growing observation demands.The observation Scheduling Problem in the MEOS constellation(MEOSSP)is a challenging issue due to the large number of satellites and tasks,as well as complex observation constraints.To address the large-scale and complicated MEOSSP,we develop a Two-Stage Scheduling Algorithm based on the Pointer Network with Attention mechanism(TSSA-PNA).In TSSA-PNA,the MEOS observation scheduling is decomposed into a task allocation stage and a single-MEOS scheduling stage.In the task allocation stage,an adaptive task allocation algorithm with four problem-specific allocation operators is proposed to reallocate the unscheduled tasks to new MEOSs.Regarding the single-MEOS scheduling stage,we design a pointer network based on the encoder-decoder architecture to learn the optimal singleMEOS scheduling solution and introduce the attention mechanism into the encoder to improve the learning efficiency.The Pointer Network with Attention mechanism(PNA)can generate the single-MEOS scheduling solution quickly in an end-to-end manner.These two decomposed stages are performed iteratively to search for the solution with high profit.A greedy local search algorithm is developed to improve the profits further.The performance of the PNA and TSSA-PNA on singleMEOS and multi-MEOS scheduling problems are evaluated in the experiments.The experimental results demonstrate that PNA can obtain the approximate solution for the single-MEOS scheduling problem in a short time.Besides,the TSSA-PNA can achieve higher observation profits than the existing scheduling algorithms within the acceptable computational time for the large-scale MEOS scheduling problem. 展开更多
关键词 Micro-nano earth observation satellite Observation scheduling Large-scale scheduling two-stage optimization Pointer network Attention mechanism
原文传递
STEM教育走进《校园立体小菜园》工程实践校本课程
11
作者 纪栋栋 《小学科学》 2026年第4期88-90,共3页
如今,走进校园你会发现,STEM教育已不再是遥远的概念,而是悄然走进了日常课堂的每个角落。特别是在小学阶段,那些带着学生动手创造的工程实践课,正焕发出独特的魅力。我们设计的《校园立体小菜园》校本课程,就是一次将STEM理念“翻译”... 如今,走进校园你会发现,STEM教育已不再是遥远的概念,而是悄然走进了日常课堂的每个角落。特别是在小学阶段,那些带着学生动手创造的工程实践课,正焕发出独特的魅力。我们设计的《校园立体小菜园》校本课程,就是一次将STEM理念“翻译”成学生语言的尝试。在这个充满生机的项目中,学生不只是听课者,更是亲手设计、建造的小小工程师。本文通过记录这个课程从无到有的全过程,观察学生在项目中的真实变化,希望能为教师们提供一个看得懂、用得上的教学参考。期待通过这样的实践,让更多学生不仅学会科学知识,更能形成工程师般的思维方式——在动手创造中成长,在解决问题中闪光。 展开更多
关键词 小学科学 stem教育 工程实践课程
在线阅读 下载PDF
Two-stage optimization of route,speed,and energy management for hybrid energy ship under sea conditions
12
作者 Xiaoyuan Luo Jiaxuan Wang +1 位作者 Xinyu Wang Xinping Guan 《iEnergy》 2025年第3期174-192,共19页
As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions an... As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group. 展开更多
关键词 Hybrid ship power system two-stage optimization dispatch speed scheduling sea conditions modified A-star algorithm improved grey wolf optimization algorithm
在线阅读 下载PDF
Vibration Frequency Characteristic Study of Two-stage Excitation Valve Used in Vibration Experiment System 被引量:1
13
作者 Yongping WU Chengwei XIONG +2 位作者 Yi LIU Jiafei ZHENG Mingxuan ZOU 《Mechanical Engineering Science》 2020年第1期30-35,共6页
To satisfy the demands of higher frequency and amplitude in hydraulic vibration experiment system,the two-stage excitation valve is presented,and a mathematical model of two-stage excitation valve is established after... To satisfy the demands of higher frequency and amplitude in hydraulic vibration experiment system,the two-stage excitation valve is presented,and a mathematical model of two-stage excitation valve is established after analyzing the working principle of two-stage excitation valve,then the influence of relevant parameters on the displacement of main spool of two-stage excitation valve is studied by using Matlab/Simulink to calculate and analyze.The results show that the displacement of main spool will be smaller with bigger diameter and more secondary valve ports.When the reversing frequency is higher and the oil supply pressure is lower as well as the axial guide width of valve ports is smaller,the maximum displacement of main spool is smaller.The new two-stage excitation valve is easy to adjust reversing frequency and flow.The high frequency can be achieved by improving the rotation speed of servo motor and adding the number of secondary valve ports;the large flow can be realized by increasing the axial guide width of secondary valve ports and oil supply pressure.The result of this study is of guiding significance for designing the rotary valve for the achievement of higher reversing frequency and larger flow. 展开更多
关键词 two-stage excitation valve rotary valve control mathematical modelling numerical analysis
在线阅读 下载PDF
STOCHASTIC DISCRETE MODEL OF TWO-STAGE ISOLATION SYSTEM WITH RIGID LIMITERS
14
作者 贺华 冯奇 +1 位作者 沈荣瀛 汪玉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第9期1249-1256,共8页
The possible intermittent impacts of a two-stage isolation system with rigid limiters have been investigated. The isolation system is under periodic external excitation disturbed by small stationary Gaussian white no... The possible intermittent impacts of a two-stage isolation system with rigid limiters have been investigated. The isolation system is under periodic external excitation disturbed by small stationary Gaussian white noise after shock. The maximal impact Poincaré map is proposed based on the multi-body dynamics with unilateral constrains. Then in the period after shock, the zero order approximate stochastic discrete model and the first order approximate stochastic model are developed. The real isolation system of an MTU diesel engine is used to evaluate the established model. After calculating of the numerical example, the effects of noise excitation on the isolation system are discussed. The results show that the property of the system is complicated due to intermittent impact. The difference between zero order model and the first order model may be great. The effect of small noise is obvious. The results may be expected useful to the naval designers. 展开更多
关键词 Poincaré map stochastic vibro-impact system two-stage isolation
在线阅读 下载PDF
Development of the two-stage SCR control strategy to satisfy ultra-low NO_(x) emission regulation for heavy-duty diesel engine
15
作者 Jincheng Li Gang Li +3 位作者 Haibo Sun Linpeng Li Zunqing Zheng Mingfa Yao 《Journal of Environmental Sciences》 2025年第10期360-370,共11页
The emission regulations for heavy-duty diesel engines regarding nitrogen oxide(NO_(x))are becoming increasingly stringent,particularly in relation to cold start cycles.While the twostage selective catalytic reduction... The emission regulations for heavy-duty diesel engines regarding nitrogen oxide(NO_(x))are becoming increasingly stringent,particularly in relation to cold start cycles.While the twostage selective catalytic reduction(SCR)has the potential to achieve ultra-low NO_(x) emissions,several challenges remain,including the accurate prediction of ammonia(NH_(3))storage mass and the co-control of the two-stage SCR.The first step in this study involved the establishment of a rapid control prototype platform to facilitate the development and validation of a two-stage SCR control strategy.Secondly,an initial method for predicting the NH_(3) storage based on the mass conservation law was proposed,which was subsequently improved by filling and emptying experiments.The third step involved the development of a two-stage SCR co-control strategy,including obtaining the steady-state NH_(3) storage target value,dynamic correction for NH_(3) storage target value,regulation of NH_(3) storage,and control of the close-coupled SCR urea injector state.Finally,the two-stage SCR urea injection control strategy was certified under the world harmonized transient cycle(WHTC).The results demonstrate that the composite value of engine outlet NO_(x) emissions under cold and hot start WHTC cycles is 13 g/(kW·h).Meanwhile,the composite value of tailpipe NO_(x) emissions under cold and hot start WHTC cycles is 0.065 g/(kW·h),representing only 14%of the EU VI limit value of 0.46 g/(kW·h).Thus,the findings demonstrate that integrating an accurate NH_(3) storage prediction method with the two-stage SCR co-control function is crucial for heavy-duty diesel engines to achieve ultra-low NO_(x) emissions. 展开更多
关键词 Heavy-duty diesel engine Ultra-low nitrogen oxide emission Close-coupled selective catalytic REDUCTION Ammonia storage mass two-stage selective catalytic reduction control strategy
原文传递
Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs
16
作者 KONG Xiangqiang MENG Xiangri +2 位作者 LI Jianbo SHANG Yamping CUFulin 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第2期155-162,共8页
The objective of this paper is to present a simulation study on the two-stage absorption refrigeration systems of 2.5 kW capacity using LiBr-H2O,NH3-H2O and R124-DMAC as working pairs.Under the design condition that t... The objective of this paper is to present a simulation study on the two-stage absorption refrigeration systems of 2.5 kW capacity using LiBr-H2O,NH3-H2O and R124-DMAC as working pairs.Under the design condition that the generating,absorbing,evaporating and condensing temperatures are 75℃,45℃,5℃and 40℃,respectively,the high and low pressure side solution circulation ratios and the coefficient of performance(COP)for the systems are calculated.Then the influences of medium,generating,absorbing,evaporating and condensing temperatures on system performances are analyzed.The results show that under the design condition,the COP of the LiBr-H2Osystem can reach 0.49,superior to those of the NH3-H2O and R124-DMAC systems,which are 0.32 and 0.31,respectively.Furthermore,the medium temperature for higher COP lies in an interval of 64-67℃for the LiBr-H2O.NH3-H2O and R124-DMAC systems.High generating temperature and low absorbing temperature can decrease the high and low pressure side solution circulation ratios,and can also increase the COP.High evaporating temperature can decrease the low pressure side solution circulation ratio and increase the COP.Low condensing temperature can decrease the high pressure side solution circulation ratio and increase the COP. 展开更多
关键词 absorption refrigeration two-stage system working pair cycle characteristics
原文传递
A Method Based on Multi-Body Dynamic Analysis for A Floating Two-Stage Buffer Collision-Prevention System Under Ship Collision Loads
17
作者 LU Kai CHEN Xu-jun +2 位作者 YUAN Hui HUANG Heng WU Guang-huai 《China Ocean Engineering》 SCIE EI CSCD 2021年第6期828-840,共13页
The collision of ships poses a great threat to the piers in navigable waters.The kinetic energy of the moving ship can be consumed not only with the structural deformation,but also with tensile force from the proposed... The collision of ships poses a great threat to the piers in navigable waters.The kinetic energy of the moving ship can be consumed not only with the structural deformation,but also with tensile force from the proposed Floating Two-stage Buffer Collision-Prevention System(FTBCPS).The actual anti-collision effect of the current designed FTBCPS can be evaluated by the dynamic simulation.The construction method of 3D model is introduced,and the system initial state is defined.The transformation matrix and the basic kinematics vector are given,and the system basic dynamics equation is then created.The mechanical analysis on each component is carried out,and the detailed process of numerical simulation is also given.The simulation results indicate that collision direction and collision position have a great influence on the system kinematic response.Bridge pier faces the greatest threat when a ship hits the floater on the front beam in a nearly vertical direction,or on the side beam in a larger course angle.The study shows that the current designed FTBCPS can make full use of the fracture tensile property of polyester ropes and keep the tensile force acted on pier within its bearable range at the same time.The collision direction has a significant effect on the dynamic response of the colliding bodies,but no failure appeared in the simulations,which indicates that the current designed FTBCPS can protect bridge piers of all cases for the 5000-t ship with a velocity smaller than 5 m/s in navigable waters. 展开更多
关键词 bridge engineering Floating two-stage Buffer Collision-Prevention System dynamics response compression force anti-collision tensile force anti-collision
在线阅读 下载PDF
Optimization design of two-stage amplification micro-drive system without additional motion based on particle swarm optimization algorithm
18
作者 Manzhi Yang Kaiyang Wei +4 位作者 Chuanwei Zhang Dandan Liu Yizhi Yang Feiyan Han Shuanfeng Zhao 《Visual Computing for Industry,Biomedicine,and Art》 EI 2022年第1期340-351,共12页
With the increasing requirements of precision mechanical systems in electronic packaging,ultra-precision machining,biomedicine and other high-tech fields,it is necessary to study a precision two-stage amplification mi... With the increasing requirements of precision mechanical systems in electronic packaging,ultra-precision machining,biomedicine and other high-tech fields,it is necessary to study a precision two-stage amplification micro-drive system that can safely provide high precision and a large amplification ratio.In view of the disadvantages of the current two-stage amplification and micro-drive system,such as poor security,low motion accuracy and limited amplification ratio,an optimization design of a precise symmetrical two-stage amplification micro-drive system was completed in this study,and its related performance was studied.Based on the guiding principle of the flexure hinge,a two-stage amplification micro-drive mechanism with no parasitic motion or non-motion direction force was designed.In addition,the structure optimization design of the mechanism was completed using the particle swarm optimization algorithm,which increased the amplification ratio of the mechanism from 5 to 18 times.A precise symmetrical two-stage amplification system was designed using a piezoelectric ceramic actuator and two-stage amplification micro-drive mechanism as the micro-driver and actuator,respectively.The driving,strength,and motion performances of the system were subsequently studied.The results showed that the driving linearity of the system was high,the strength satisfied the design requirements,the motion amplification ratio was high and the motion accuracy was high(relative error was 5.31%).The research in this study can promote the optimization of micro-drive systems. 展开更多
关键词 Particle swarm optimization Micro-drive mechanism two-stage amplification Optimization design Performance of guidance
在线阅读 下载PDF
Nonlinear Modeling for a Two-Stage Degradation System Based on Nonhomogeneous Poisson Process
19
作者 倪祥龙 赵建民 +2 位作者 赵劲松 郭驰名 杨瑞锋 《Journal of Donghua University(English Edition)》 EI CAS 2015年第6期932-935,共4页
The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradatio... The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradation process,cumulative damage model is used for degradation modeling.Assuming that damage increment is Gamma distribution,shock counting subjects to a homogeneous Poisson process(HPP)when degradation process is linear,and shock counting is a non-homogeneous Poisson process(NHPP)when degradation process is nonlinear.A two-stage degradation system is considered in this paper,for which the degradation process is linear in the first stage and the degradation process is nonlinear in the second stage.A nonlinear modeling method for considered system is put forward,and reliability model and remaining useful life model are established.A case study is given to validate the veracities of established models. 展开更多
关键词 two-stage degradation process NONLINEAR cumulative damage model non-homogeneous Poisson process(NHPP)
在线阅读 下载PDF
Dynamic compressive strength optimization and stemming performance of self-swelling cartridge for rock blasting
20
作者 Runran Li Shuai Xu Kai Liu 《International Journal of Minerals,Metallurgy and Materials》 2025年第12期2880-2895,共16页
During rock drilling and blasting activities,stemming blast holes is to prevent high-pressure explosive gases from the holes,thereby enhancing the overall blasting effectiveness.Hence,it is imperative to investigate t... During rock drilling and blasting activities,stemming blast holes is to prevent high-pressure explosive gases from the holes,thereby enhancing the overall blasting effectiveness.Hence,it is imperative to investigate the dynamic mechanical properties of the stem-ming materials.In this study,impact compression tests were conducted on self-swelling cartridges(SSCs)using a split Hopkinson pres-sure bar(SHPB),aiming to evaluate dynamic performances across strain rate range of 20 to 65 s^(−1).Test results indicate that the dynamic compressive strength of SSCs exhibits the following trends:it increases with increasing density of SSC,decreases with an increase in insertion gap,and follows an initial rise and subsequent fall trend with an increase in water absorption.The order of significance among these factors is density>water absorption>insertion gaps.SSCs exhibit a pronounced strain-rate strengthening dependence in dynamic compressive strength.Furthermore,both the compressive peak stress and peak strain of SSCs follow a well-defined quadratic upward trend with increasing strain rates.As the strain rate increases,the degree of fragmentation,absorbed energy,and dynamic increase factor exhibit an upward trend.Model experimental results indicate that,compared to cementitious stemming materials,SSCs can prolong the duration of gas explosion action.Therefore,SSCs are more suitable for high strain-rate applications such as blasting stemming and rock burst control. 展开更多
关键词 blasting stemming self-swelling cartridge dynamic compressive strength split Hopkinson pressure bar dynamic increase factor
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部