期刊文献+
共找到457,838篇文章
< 1 2 250 >
每页显示 20 50 100
A novel constitutive model for two-stage creep aging process of 7B50 aluminum alloy and its application in springback prediction 被引量:1
1
作者 Ling-zhi XU Can-yu TONG +7 位作者 Chang-zhi LIU Li-hua ZHAN Ming-hui HUANG You-liang YANG Dong-yang YAN Jian-hua YIN Hui XIA Yong-qian XU 《Transactions of Nonferrous Metals Society of China》 2025年第3期734-748,共15页
A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary ... A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary micro-variables evolution at different temperatures and their interaction.The dislocation density was incorporated into the model to capture the effect of creep deformation on precipitation.Quantitative transmission electron microscopy and experimental data obtained from a previous study were used to calibrate the model.Subsequently,the developed constitutive model was implemented in the finite element(FE)software ABAQUS via the user subroutines for TSCA process simulation and the springback prediction of an integral panel.A TSCA test was performed.The result shows that the maximum radius deviation between the formed plate and the simulation results is less than 0.4 mm,thus validating the effectiveness of the developed constitutive model and FE model. 展开更多
关键词 two-stage creep aging process bimodal precipitation constitutive modeling springback prediction Al−Zn−Mg−Cu alloy
在线阅读 下载PDF
Remaining Life Prediction Method for Photovoltaic Modules Based on Two-Stage Wiener Process 被引量:1
2
作者 Jie Lin Hongchi Shen +1 位作者 Tingting Pei Yan Wu 《Energy Engineering》 EI 2025年第1期331-347,共17页
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p... Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules. 展开更多
关键词 Photovoltaic modules DEGRADATION stochastic processes lifetime prediction
在线阅读 下载PDF
Enhanced oxidation mechanism of arsenopyrite in two-stage oxidation process applying bio-oxidation waste solution
3
作者 ZHANG Shi-qi YANG Hong-ying +3 位作者 TONG Lin-lin CHEN Guo-min KANG Guo-ai ZHAO Zhi-xin 《Journal of Central South University》 2025年第1期94-105,共12页
Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mec... Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mechanism of arsenopyrite by evaluating the effects of physical and chemical changes of arsenopyrite in BOS chemical oxidation stage on mineral dissolution kinetics,as well as microbial growth activity and community structure composition in bio-oxidation stage.The results showed that the chemical oxidation contributed to destroying the physical and chemical structure of arsenopyrite surface and reducing the particle size,and led to the formation of nitrogenous substances on mineral surface.These chemical oxidation behaviors effectively promoted Fe^(3+)cycling in the bio-oxidation system and weakened the inhibitory effect of the sulfur film on ionic diffusion,thereby enhancing the dissolution kinetics of the arsenopyrite.Therefore,the bio-oxidation efficiency of arsenopyrite was significantly increased in the two-stage oxidation process.After 18 d,the two-stage oxidation process achieved total extraction rates of(88.8±2.0)%,(86.7±1.3)%,and(74.7±3.0)%for As,Fe,and S elements,respectively.These values represented a significant increase of(50.8±3.4)%,(47.1±2.7)%,and(46.0±0.7)%,respectively,compared to the one-stage bio-oxidation process. 展开更多
关键词 BIO-OXIDATION ARSENOPYRITE two-stage oxidation process microbial community kinetics
在线阅读 下载PDF
Neurodegenerative processes of aging: A perspective of restoration through insulin-like growth factor-1
4
作者 Rosana Crespo Claudia Herenu 《Neural Regeneration Research》 2026年第4期1562-1563,共2页
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode... The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function. 展开更多
关键词 neurodegenerative diseases neurodegenerative processes cognitive impairments progressive loss neuronal structure function develo ping neurological dysfunctions insulin growth factor RESTORATION aging process
暂未订购
Reliability modelling based on dependent two-stage virtual age processes
5
作者 QIU Qingan CUI Lirong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第3期711-721,共11页
This paper proposes reliability and maintenance models for systems suffering random shocks arriving according to a non-homogeneous Poisson process.The system degradation process include two stages:from the installatio... This paper proposes reliability and maintenance models for systems suffering random shocks arriving according to a non-homogeneous Poisson process.The system degradation process include two stages:from the installation of a new system to an initial point of a defect(normal stage),and then from that point to failure(defective stage),following the delay time concept.By employing the virtual age method,the impact of external shocks on the system degradation process is characterized by random virtual age increment in the two stages,resulting in the corresponding two-stage virtual age process.When operating in the defective state,the system becomes more susceptible to fatigue and suffers from a greater aging rate.Replacement is carried out either on failure or on the detection of a defective state at periodic or opportunistic inspections.This paper evaluates system reliability performance and investigates the optimal opportunistic maintenance policy.A case study on a cooling system is given to verify the obtained results. 展开更多
关键词 reliability evaluation delay-time model virtual age process opportunistic maintenance
在线阅读 下载PDF
Production of Light Olefins from Biosyngas by Two-stage Catalytic Conversion Process via Dimethyl Ether 被引量:1
6
作者 李宇萍 涂军令 +4 位作者 王铁军 马隆龙 张兴华 章青 蔡炽柳 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第2期227-232,I0004,共7页
NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the f... NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas. 展开更多
关键词 Light olefins two-stage conversion Dimethyl ether Biosyngas NiSAPO-34/HZSM-5
暂未订购
郭为与他的AI for Process
7
作者 姜奇平 端利涛 《互联网周刊》 2026年第2期8-12,共5页
一、作为哲学的AI for Process(一)郭为的哲学思想1.郭为是谁郭为是谁?他是一位哲学家。顺便说,他同时还领导着神州数码。为什么说郭为是哲学家呢?因为他在著作中谈到高深的哲学,如“数据如水,奔流不息,无界融合”。他引述古希腊哲学家... 一、作为哲学的AI for Process(一)郭为的哲学思想1.郭为是谁郭为是谁?他是一位哲学家。顺便说,他同时还领导着神州数码。为什么说郭为是哲学家呢?因为他在著作中谈到高深的哲学,如“数据如水,奔流不息,无界融合”。他引述古希腊哲学家赫拉克利特所说的“万物流转”,又说“你不能两次踏进同一条河流,因为新的水不断地流过你的身旁”,他所表达的意思是“世界上唯一不变的就是变化”。 展开更多
关键词 AI for process 郭为
在线阅读 下载PDF
Use of two-stage dough mixing process in improving water distribution of dough and qualities of bread made from wheat–potato flour 被引量:7
8
作者 YIN Jian CHENG Li +4 位作者 HONG Yan LI Zhao-feng LI Cai-ming BAN Xiao-feng GU Zheng-biao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第1期300-310,共11页
The two-stage dough mixing process was innovated to improve the qualities of bread made from potato flour(PF) and wheat flour at a ratio of 1:1(w/w). The final dough was first prepared from wheat flour before being ad... The two-stage dough mixing process was innovated to improve the qualities of bread made from potato flour(PF) and wheat flour at a ratio of 1:1(w/w). The final dough was first prepared from wheat flour before being added with PF. The effects of the method on enhancing the dough qualities were verified, and the distribution of water in gluten-gelatinized starch matrix of the doughs was investigated. We observed that the bread qualities were improved, as reflected by the increase of specific volume from 2.26 to 2.96 m L g^–1 and the decrease of crumb hardness from 417.93 to 255.57 g. The results from rheofermentometric measurements showed that the dough mixed using the developed mixing method had higher maximum dough height value, time of dough porosity appearance, and gas retention coefficient, as well as enhanced gluten matrix formation compared to that mixed by the traditional mixing method. The results from low-field nuclear magnetic resonance confirmed that the competitive water absorption between gluten and gelatinized starch could restrict the formation of gluten network in the dough mixed using the traditional mixing process. Using the novel mixing method, gluten could be sufficiently hydrated in stage 1, which could then weaken the competitive water absorption caused by gelatinized starch in stage 2;this could also be indicated by the greater mobility of proton in PF and better development of gluten network during mixing. 展开更多
关键词 gelatinized starch gluten network potato flour water distribution two-stage dough mixing process
在线阅读 下载PDF
Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas 被引量:4
9
作者 Xiuxin Yu Bing Liu +1 位作者 Yuanhui Shen Donghui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期378-391,共14页
A two-stage vacuum pressure swing adsorption(VPSA)process that coupled kinetically controlled and equilibrium controlled separation process with reflux has been investigated for capturing carbon dioxide from dry flue ... A two-stage vacuum pressure swing adsorption(VPSA)process that coupled kinetically controlled and equilibrium controlled separation process with reflux has been investigated for capturing carbon dioxide from dry flue gas(85%N_(2)/15%CO_(2)).In the first enriching stage,carbon molecular sieve(CMS),which shows kinetic selectivity for CO_(2)/N_(2),is adopted as the adsorbent to remove most N_(2)in feed gas,thereby upgrading CO_(2)and significantly reducing the amount for further refinement.The second stage loads zeolite 13X as adsorbent to purify the CO_(2)-rich flow from the first stage for meeting the requirements of National Energy Technology Laboratory.Series of experiments have been conducted for adsorption isotherms measuring and lab-scale experimental validation as well as analysis.The effect of feed composition on the separation performance of the PSA system was studied experimentally and theoretically here.The optimal results achieved 95.1%purity and 92.9%recovery with a high CO_(2)productivity(1.89 mol CO_(2)·h^(-1)·kg^(-1))and an appropriate energy consumption of 1.07 MJ·(kg CO_(2))^(-1).Further analysis has been carried out by simulation for explicating the temperature,pressure,and concentration distribution at cyclic steady state. 展开更多
关键词 two-stage VPSA process Binary mixture CO_(2)capture Zeolite 13X Carbon molecular sieve
在线阅读 下载PDF
Two-stage treatment process of pickling wastewater in the cold-rolling production of stainless steel 被引量:3
10
作者 SHI Lei CHEN Ronghuan WANG Ruyi 《Baosteel Technical Research》 CAS 2010年第2期16-22,共7页
Based on the characteristics of pickling wastewater in the cold-rolling production of stainless steel, a new processing route, featuring source sludge reduction, wastewater two-stage treatment, heavy metal-contained s... Based on the characteristics of pickling wastewater in the cold-rolling production of stainless steel, a new processing route, featuring source sludge reduction, wastewater two-stage treatment, heavy metal-contained sludge and calcium salt sludge separating recovery, was proposed. As shown by the research results, after the two-stage process treatment, the effluent water can steadily reach the emission standards, the sludge yield can be decreased by more than 8% ; within the heavy metal-contained sludge, the recovery rates of Fc,Cr and Ni can either reach or surpass 95% ,and the total content ofF and S can drop to around 3%. Therefore,the sludge in the front part can be used as ferric dust. In the calcium salt sludge ,the recovery rate of F can either reach or surpass 85% ,and the total contents of Fe,Cr and Ni can fall below 0.5%. So the sludge in the rear part can be used as fluorgypsum or fluorite. Meanwhile,the results of the analysis on heavy metals leaching toxicity and morphologic distribution indicate that the two kinds of sectionalized sludge are not classified as hazardous wastes, which have a stable behavior and better utilization values compared with the former mixed- sludge. 展开更多
关键词 cold-rolled pickling wastewater two-stage process heavy metal-contained sludge calcium salt sludge
在线阅读 下载PDF
Multi-objective optimization for leaching process using improved two-stage guide PSO algorithm 被引量:8
11
作者 胡广浩 毛志忠 何大阔 《Journal of Central South University》 SCIE EI CAS 2011年第4期1200-1210,共11页
A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated ... A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively. 展开更多
关键词 leaching process MODELING multi-objective optimization two-stage guide EXPERIMENT
在线阅读 下载PDF
An Integrated Process of a Two-Stage Fixed Bed Syngas Production and F-T Synthesis for GTL in Remote Gas Field 被引量:2
12
作者 代小平 余长春 +3 位作者 李强 张长斌 江启滢 沈师孔 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第1期85-89,共5页
A novel process for catalytic oxidation of methane to synthesis gas (syngas), which consists of two consecutive fixed-bed reactors with air introduced into the reactors, integrated Fischer-Tropsch synthesis, was inves... A novel process for catalytic oxidation of methane to synthesis gas (syngas), which consists of two consecutive fixed-bed reactors with air introduced into the reactors, integrated Fischer-Tropsch synthesis, was investigated. At the same time, a catalytic combustion technology has been investigated for utilizing the F-T offgas to generate heat or power energy. The results show that the two-stage fixed reactor process keep away from explosion of CH4/O2. The integrated process is fitted to produce diesel oil and lubricating oil in remote gas field. 展开更多
关键词 two-stage fixed reactor SYNGAS Fischer-Tropsch synthesis gas to liquid process
在线阅读 下载PDF
Two-Stage Mathematical Programming Approach for Steelmaking Process Scheduling Under Variable Electricity Price 被引量:6
13
作者 TAN Yuan-yuan HUANG Ying-lei LIU Shi-xin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第7期1-8,共8页
The steelmaking process scheduling problem by considering variable electricity price (SMSPVEP) was in- vestigated. A decomposition approach was proposed for the SMSPVEP. At the first stage, mathematical program-ming... The steelmaking process scheduling problem by considering variable electricity price (SMSPVEP) was in- vestigated. A decomposition approach was proposed for the SMSPVEP. At the first stage, mathematical program-ming was utilized to minimize the maximum completion time for each cast without considering variable electricity price. At the second stage, based on obtained relative schedules of all casts, a mathematical model was formulated with an objective of minimizing the energy cost for all casts scheduling problem. The two-stage models were tested on randomly generated instances based on the practical process in a Chinese steelmaking plant. Computational results demonstrate the effectiveness of the proposed approach. 展开更多
关键词 steelmaking process SCHEDULING variable electricity price mathematical programming
原文传递
Empirical Study of Classification Process for Two-stage Turbo Air Classifier in Series 被引量:1
14
作者 YU Yuan LIU Jiaxiang LI Gang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期526-531,共6页
The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on ... The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the 'fish-hook' effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the 'fish-hook' effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production. 展开更多
关键词 two-stage turbo air classifier in series aluminum oxide powders process parameters classification performance
在线阅读 下载PDF
Process intensification of fine coal separation using two-stage flotation column 被引量:3
15
作者 桂夏辉 刘炯天 +3 位作者 曹亦俊 程敢 张海军 王永田 《Journal of Central South University》 SCIE EI CAS 2013年第12期3648-3659,共12页
Flotation column is widely used as the separation equipment for fine mineral due to its high selectivity. However, this device may be unsuitable for the coarse particle flotation and has high handling ability. A two-s... Flotation column is widely used as the separation equipment for fine mineral due to its high selectivity. However, this device may be unsuitable for the coarse particle flotation and has high handling ability. A two-stage flotation column with dimensions of 2 000 mm×1 000 mm×4 000 mm was designed to enhance the column flotation process. The energy input was modified by adjusting the flow rate and the head of circulating pump. The flotation column was designed with low energy input in the first stage(speed flotation stage) to recover easy-to-float materials quickly, and high energy input in the second stage(recovery stage) to recover difficult-to-float minerals compulsorily. Contrast experiments on the throughput and coarse coal recovery of high ash coal from the Kailuan Mine were conducted using conventional single-stage flotation column and the two-stage flotation column. The results show that the combustible matter recovery of the two-stage flotation column is 5.25% higher than that of the conventional single-stage flotation column. However, the ash contents of clean coal for both columns are similar. Less coarse coals with low ash are obtained using the two-stage flotation column than that using the single-stage column flotation with the same handling ability. The two-stage flotation column process can enhance coal flotation compared with the conventional single-stage column flotation. 展开更多
关键词 flotation column COAL energy input handling ability two-stage flotation
在线阅读 下载PDF
Nonlinear Modeling for a Two-Stage Degradation System Based on Nonhomogeneous Poisson Process
16
作者 倪祥龙 赵建民 +2 位作者 赵劲松 郭驰名 杨瑞锋 《Journal of Donghua University(English Edition)》 EI CAS 2015年第6期932-935,共4页
The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradatio... The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradation process,cumulative damage model is used for degradation modeling.Assuming that damage increment is Gamma distribution,shock counting subjects to a homogeneous Poisson process(HPP)when degradation process is linear,and shock counting is a non-homogeneous Poisson process(NHPP)when degradation process is nonlinear.A two-stage degradation system is considered in this paper,for which the degradation process is linear in the first stage and the degradation process is nonlinear in the second stage.A nonlinear modeling method for considered system is put forward,and reliability model and remaining useful life model are established.A case study is given to validate the veracities of established models. 展开更多
关键词 two-stage degradation process NONLINEAR cumulative damage model non-homogeneous Poisson process(NHPP)
在线阅读 下载PDF
Adsorption-Driven Interfacial Interactions: The Key to Enhanced Performance in Heterogeneous Advanced Oxidation Processes 被引量:1
17
作者 Jinming Luo Deyou Yu +3 位作者 Kaixing Fu Zhuoya Fang Xiaolin Zhang Mingyang Xing 《Engineering》 2025年第4期22-25,共4页
Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the el... Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies. 展开更多
关键词 Heterogeneous advanced oxidation processes ADSORPTION Pollutant degradation Dual active sites CATALYSIS SELECTIVITY
在线阅读 下载PDF
Progress in study of spray pyrolysis technology for chloride salt solutions in rare earth extraction and separation processes 被引量:1
18
作者 Ziyi Cheng Xiaowei Huang +5 位作者 Zongyu Feng Jianping Long Hai Yu Meng Wang Juanyu Yang Haiqing Hao 《Journal of Rare Earths》 2025年第10期2053-2064,I0001,共13页
This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.... This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy. 展开更多
关键词 Rare earths Separation processes Spray pyrolysis technology Chloride salt solutions Green recycling
原文传递
Relative vacuum reduction innovative processes applied in primary magnesium production-Comprehensive analysis of thermodynamics,resource,energy flow,and carbon emission 被引量:1
19
作者 Xiaolong Li Tingan Zhang +3 位作者 Yan Liu Junhua Guo Jingzhong Xu Yuanyuan Liang 《Journal of Magnesium and Alloys》 2025年第7期3134-3149,共16页
Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industr... Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industries.The global production of primary magnesium has reached approximately 1.2 million tons per year,with anticipated diversification in future applications and significant market demand.Nevertheless,approximately 80%of the world’s primary magnesium is still manufactured through the Pidgeon process,grappling with formidable issues including high energy consumption,massive carbon emission,significant resource depletion,and environmental pollution.The implementation of the relative vacuum method shows potential in breaking through technological challenges in the Pidgeon process,facilitating clean,low-carbon continuous magnesium smelting.This paper begins by introducing the principles of the relative vacuum method.Subsequently,it elucidates various innovative process routes,including relative vacuum ferrosilicon reduction,aluminum thermal reduction co-production of spinel,and aluminum thermal reduction co-production of calcium aluminate.Finally,and thermodynamic foundations of the relative vacuum,a quantitative analysis of the material,energy flows,carbon emission,and production cost for several new processes is conducted,comparing and analyzing them against the Pidgeon process.The study findings reveal that,with identical raw materials,the relative vacuum silicon thermal reduction process significantly decreases raw material consumption,energy consumption,and carbon dioxide emissions by 15.86%,30.89%,and 26.27%,respectively,compared to the Pidgeon process.The relative vacuum process,using magnesite as the raw material and aluminum as the reducing agent,has the lowest magnesium-to-feed ratio,at only 3.385.Additionally,its energy consumption and carbon dioxide emissions are the lowest,at 1.817 tce/t Mg and 7.782 t CO_(2)/t Mg,respectively.The energy consumption and carbon emissions of the relative vacuum magnesium smelting process co-producing calcium aluminate(12CaO·7Al_(2)O_(3),3CaO·Al_(2)O_(3),and CaO·Al_(2)O_(3))are highly correlated with the consumption of dolomite in the raw materials.When the reduction temperature is around 1473.15 K,the critical volume fraction of magnesium vapor for different processes varies within the range of 5%–40%.Production cost analysis shows that the relative vacuum primary magnesium smelting process has significant economic benefits.This paper offers essential data support and theoretical guidance for achieving energy efficiency,carbon reduction in magnesium smelting,and the industrial adoption of innovative processes. 展开更多
关键词 Magnesium smelting Relative vacuum reduction process THERMODYNAMICS Resource and energy flow Carbon emission
在线阅读 下载PDF
Unified Neural Lexical Analysis Via Two-Stage Span Tagging
20
作者 Yantuan Xian Yefen Zhu +3 位作者 Zhentao Yu Yuxin Huang Junjun Guo Yan Xiang 《CAAI Transactions on Intelligence Technology》 2025年第4期1254-1267,共14页
Lexical analysis is a fundamental task in natural language processing,which involves several subtasks,such as word segmentation(WS),part-of-speech(POS)tagging,and named entity recognition(NER).Recent works have shown ... Lexical analysis is a fundamental task in natural language processing,which involves several subtasks,such as word segmentation(WS),part-of-speech(POS)tagging,and named entity recognition(NER).Recent works have shown that taking advantage of relatedness between these subtasks can be beneficial.This paper proposes a unified neural framework to address these subtasks simultaneously.Apart from the sequence tagging paradigm,the proposed method tackles the multitask lexical analysis via two-stage sequence span classification.Firstly,the model detects the word and named entity boundaries by multilabel classification over character spans in a sentence.Then,the authors assign POS labels and entity labels for words and named entities by multi-class classification,respectively.Furthermore,a Gated Task Transformation(GTT)is proposed to encourage the model to share valuable features between tasks.The performance of the proposed model was evaluated on Chinese and Thai public datasets,demonstrating state-of-the-art results. 展开更多
关键词 gated task transformation lexical analysis multitask two-stage
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部