The Traveling Salesman Problem(TSP)is a well-known NP-Hard problem,particularly challenging for conventional solving methods due to the curse of dimensionality in high-dimensional instances.This paper proposes a novel...The Traveling Salesman Problem(TSP)is a well-known NP-Hard problem,particularly challenging for conventional solving methods due to the curse of dimensionality in high-dimensional instances.This paper proposes a novel Double-stage Surrogate-assisted Pigeon-inspired Optimization algorithm(DOSA-PIO)to address this issue.DOSA-PIO integrates the ordering points to identify the clustering structure method for data clustering and employs a local surrogate model to assist the evolution of the Pigeon-inspired Optimization(PIO)algorithm.This combination enhances the algorithm’s ability to explore the solution space and converge to optimal solutions more effectively.Additionally,two novel approaches are introduced to extend the generalizability of continuous algorithms for solving discrete problems,enabling the adaptation of continuous optimization techniques to the discrete nature of TSP.Extensive experiments using benchmark functions and high-dimensional TSP instances demonstrate that DOSA-PIO significantly outperforms comparative algorithms in various dimensions(10D,20D,30D,50D,and 100D).The proposed algorithm provides superior solutions compared to traditional methods,highlighting its potential for solving high-dimensional TSPs.By leveraging advanced data clustering techniques and surrogate-assisted optimization,DOSA-PIO offers an effective solution for high-dimensional TSP instances,with experimental results confirming its superior performance and potential for practical applications in complex optimization problems.展开更多
A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary ...A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary micro-variables evolution at different temperatures and their interaction.The dislocation density was incorporated into the model to capture the effect of creep deformation on precipitation.Quantitative transmission electron microscopy and experimental data obtained from a previous study were used to calibrate the model.Subsequently,the developed constitutive model was implemented in the finite element(FE)software ABAQUS via the user subroutines for TSCA process simulation and the springback prediction of an integral panel.A TSCA test was performed.The result shows that the maximum radius deviation between the formed plate and the simulation results is less than 0.4 mm,thus validating the effectiveness of the developed constitutive model and FE model.展开更多
This paper extends the quantitative stability results to a more general class of two-stage stochastic variational inequality problems(TSVIP).The existence of solutions to the TSVIP is discussed,and the quantitative re...This paper extends the quantitative stability results to a more general class of two-stage stochastic variational inequality problems(TSVIP).The existence of solutions to the TSVIP is discussed,and the quantitative relationship between the TSVIP and its distribution perturbed problem is derived.展开更多
Lexical analysis is a fundamental task in natural language processing,which involves several subtasks,such as word segmentation(WS),part-of-speech(POS)tagging,and named entity recognition(NER).Recent works have shown ...Lexical analysis is a fundamental task in natural language processing,which involves several subtasks,such as word segmentation(WS),part-of-speech(POS)tagging,and named entity recognition(NER).Recent works have shown that taking advantage of relatedness between these subtasks can be beneficial.This paper proposes a unified neural framework to address these subtasks simultaneously.Apart from the sequence tagging paradigm,the proposed method tackles the multitask lexical analysis via two-stage sequence span classification.Firstly,the model detects the word and named entity boundaries by multilabel classification over character spans in a sentence.Then,the authors assign POS labels and entity labels for words and named entities by multi-class classification,respectively.Furthermore,a Gated Task Transformation(GTT)is proposed to encourage the model to share valuable features between tasks.The performance of the proposed model was evaluated on Chinese and Thai public datasets,demonstrating state-of-the-art results.展开更多
Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mec...Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mechanism of arsenopyrite by evaluating the effects of physical and chemical changes of arsenopyrite in BOS chemical oxidation stage on mineral dissolution kinetics,as well as microbial growth activity and community structure composition in bio-oxidation stage.The results showed that the chemical oxidation contributed to destroying the physical and chemical structure of arsenopyrite surface and reducing the particle size,and led to the formation of nitrogenous substances on mineral surface.These chemical oxidation behaviors effectively promoted Fe^(3+)cycling in the bio-oxidation system and weakened the inhibitory effect of the sulfur film on ionic diffusion,thereby enhancing the dissolution kinetics of the arsenopyrite.Therefore,the bio-oxidation efficiency of arsenopyrite was significantly increased in the two-stage oxidation process.After 18 d,the two-stage oxidation process achieved total extraction rates of(88.8±2.0)%,(86.7±1.3)%,and(74.7±3.0)%for As,Fe,and S elements,respectively.These values represented a significant increase of(50.8±3.4)%,(47.1±2.7)%,and(46.0±0.7)%,respectively,compared to the one-stage bio-oxidation process.展开更多
Exploring the factors driving the decoupling of China’s sulfur dioxide(SO_(2))emissions from economic growth(DEI)is crucial for achieving sustainable development.By analyzing the decoupling indicators and driving fac...Exploring the factors driving the decoupling of China’s sulfur dioxide(SO_(2))emissions from economic growth(DEI)is crucial for achieving sustainable development.By analyzing the decoupling indicators and driving factors at both the generation and treatment stages of SO_(2),more effective targeted mitigation strategies can be developed.We employ the Tapio decoupling model and propose a two-stage method to examine the decoupling issues related to SO_(2).Our findings indicate that:①DEI shows a steady and significant improvement,with SO_(2)emission intensity identified as the primary driver.②for the decoupling of economic growth and SO_(2)generation,energy scale serves as the largest stimulator,while the effect of energy intensity changes from negative to positive,and pollution intensity is first positive and then negative.③For the decoupling of SO_(2)generation and SO_(2)removal,treatment efficiency leads as the largest promoter,followed by treatment intensity.Based on these results,this study recommends that China focuses more on enhancing clean energy utilization and the effectiveness of treatment processes.展开更多
Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growin...Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growing observation demands.The observation Scheduling Problem in the MEOS constellation(MEOSSP)is a challenging issue due to the large number of satellites and tasks,as well as complex observation constraints.To address the large-scale and complicated MEOSSP,we develop a Two-Stage Scheduling Algorithm based on the Pointer Network with Attention mechanism(TSSA-PNA).In TSSA-PNA,the MEOS observation scheduling is decomposed into a task allocation stage and a single-MEOS scheduling stage.In the task allocation stage,an adaptive task allocation algorithm with four problem-specific allocation operators is proposed to reallocate the unscheduled tasks to new MEOSs.Regarding the single-MEOS scheduling stage,we design a pointer network based on the encoder-decoder architecture to learn the optimal singleMEOS scheduling solution and introduce the attention mechanism into the encoder to improve the learning efficiency.The Pointer Network with Attention mechanism(PNA)can generate the single-MEOS scheduling solution quickly in an end-to-end manner.These two decomposed stages are performed iteratively to search for the solution with high profit.A greedy local search algorithm is developed to improve the profits further.The performance of the PNA and TSSA-PNA on singleMEOS and multi-MEOS scheduling problems are evaluated in the experiments.The experimental results demonstrate that PNA can obtain the approximate solution for the single-MEOS scheduling problem in a short time.Besides,the TSSA-PNA can achieve higher observation profits than the existing scheduling algorithms within the acceptable computational time for the large-scale MEOS scheduling problem.展开更多
The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-...The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-air source heat pump heating system structure that is specifically designed for such regions.The two-stage heat storage device in this heating system expands the storage temperature range of solar heat.The utilization of the two-stage heat storage device not onlymakes up for the instability of the solar heating system,but can also directlymeet the building heating temperature,and can reduce the influence of low-temperature outdoor environments in severe cold regions on the heating performance of the air source heat pump by using solar energy.Therefore,the two-stage phase change heat storage coupled to the solar energy-air source heat pump heating system effectively improves the utilization rate of solar energy.A numerical model of the system components and their integration was developed using TRNSYS software in this study,and various performance aspects of the system were simulated and analyzed.The simulation results demonstrated that the two-stage heat storage device can effectively store solar energy,enabling its hierarchical utilization.The low-temperature solar energy stored by the two-stage phase change heat storage device enhances the coefficient of performance of the air source heat pump by 11.1%in severe cold conditions.Using the Hooke-Jeeves optimization method,the annual cost and carbon emissions are taken as optimization objectives,with the optimized solar heat supply accounting for 52.5%.This study offers valuable insights into operational strategies and site selection for engineering applications,providing a solid theoretical foundation for the widespread implementation of this system in severe cold regions.展开更多
Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing r...Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing renewable-energy consumption and supporting sustainable-energy systems.User participation is central to demand response;however,many users are not inclined to engage actively;therefore,the full potential of demand response remains unrealized.User satisfaction must be prioritized in demand-response assessments.This study proposed a two-stage,capacity-optimization configuration method for user-level energy systems con-sidering thermal inertia and user satisfaction.This method addresses load coordination and complementary issues within the IES and seeks to minimize the annual,total cost for determining equipment capacity configurations while introducing models for system thermal inertia and user satisfaction.Indoor heating is adjusted,for optimizing device output and load profiles,with a focus on typical,daily,economic,and environmental objectives.The studyfindings indicate that the system thermal inertia optimizes energy-system scheduling considering user satisfaction.This optimization mitigates environmental concerns and enhances clean-energy integration.展开更多
As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions an...As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group.展开更多
In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integra...In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integrated with phase change material(PCM)thermal storage is proposed.First,a thermal energy management framework is constructed,combining PCM thermal storage with the alkaline electrolyzer(AE)waste heat recovery and the heat pump(HP),while establishing a PCM-driven waste drying system to enhance the efficiency of waste incineration power generation.Next,a flue gas treatment method based on purification-separation-storage coordination is adopted,achieving spatiotemporal decoupling between waste incineration and flue gas treatment.Subsequently,a two-stage optimal dispatching strategy for the multi-energy system is developed:the first stage establishes a dayahead economic dispatch model with the objective of minimizing net system costs,while the second stage introduces model predictive control(MPC)to realize intraday rolling optimization.Finally,The optimal dispatching strategies under different scenarios are obtained using the Gurobi solver,followed by a comparative analysis of the optimized operational outcomes.Simulation results demonstrate that the proposed system optimizes the output and operational states of each unit,simultaneously reducing carbon trading costs while increasing electricity sales revenue.The proposed scheduling strategy demonstrates effective grid peak-shaving functionality,thereby simultaneously improving the system’s economic performance and operational flexibility while providing an innovative technical pathway for municipal solid waste(MSW)resource utilization and low-carbon transformation of energy systems.展开更多
The emission regulations for heavy-duty diesel engines regarding nitrogen oxide(NO_(x))are becoming increasingly stringent,particularly in relation to cold start cycles.While the twostage selective catalytic reduction...The emission regulations for heavy-duty diesel engines regarding nitrogen oxide(NO_(x))are becoming increasingly stringent,particularly in relation to cold start cycles.While the twostage selective catalytic reduction(SCR)has the potential to achieve ultra-low NO_(x) emissions,several challenges remain,including the accurate prediction of ammonia(NH_(3))storage mass and the co-control of the two-stage SCR.The first step in this study involved the establishment of a rapid control prototype platform to facilitate the development and validation of a two-stage SCR control strategy.Secondly,an initial method for predicting the NH_(3) storage based on the mass conservation law was proposed,which was subsequently improved by filling and emptying experiments.The third step involved the development of a two-stage SCR co-control strategy,including obtaining the steady-state NH_(3) storage target value,dynamic correction for NH_(3) storage target value,regulation of NH_(3) storage,and control of the close-coupled SCR urea injector state.Finally,the two-stage SCR urea injection control strategy was certified under the world harmonized transient cycle(WHTC).The results demonstrate that the composite value of engine outlet NO_(x) emissions under cold and hot start WHTC cycles is 13 g/(kW·h).Meanwhile,the composite value of tailpipe NO_(x) emissions under cold and hot start WHTC cycles is 0.065 g/(kW·h),representing only 14%of the EU VI limit value of 0.46 g/(kW·h).Thus,the findings demonstrate that integrating an accurate NH_(3) storage prediction method with the two-stage SCR co-control function is crucial for heavy-duty diesel engines to achieve ultra-low NO_(x) emissions.展开更多
The biotransformation of food waste(FW)to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems.To this end,a promising technique is two-stage anae...The biotransformation of food waste(FW)to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems.To this end,a promising technique is two-stage anaerobic digestion(TSAD),in which the FW is transformed to biohythane,a gaseous mixture of biomethane and biohydrogen.This review summarises the main characteristics of FW and describes the basic principle of TSAD.Moreover,the factors influencing the TSAD performance are identified,and an overview of the research status;economic aspects;and strategies such as pre-treatment,co-digestion,and regulation of microbial consortia to increase the biohythane yield from TSAD is provided.Additionally,the challenges and future considerations associated with the treatment of FW by TSAD are highlighted.This paper can provide valuable reference for the improvement and widespread implementation of TSAD-based FW treatment.展开更多
Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the ...Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.展开更多
This study entailed an investigation of the mechanical properties,microstructural and texture orientation evolutions of Cu-Cr-Co-Ti alloys prepared via twostage cryorolling and intermediate aging treatment.To this end...This study entailed an investigation of the mechanical properties,microstructural and texture orientation evolutions of Cu-Cr-Co-Ti alloys prepared via twostage cryorolling and intermediate aging treatment.To this end,X-ray diffraction and electron backscatter diffraction were employed.The results indicate that the two-stage cryorolling and intermediate aging treatments led to the development of profuse twin bundles and significantly enhanced the mechanical properties.The initial cryorolling led to coplanar slip and developed a strong Y({111}<112>)orientation,accelerating the formation of Goss({011}<100>)orientation and a Brass-type texture.The intermediate aging treatment relieved the restriction on dislocation slip and reoriented the grains toward the Copper({112}<111>)and Z({111}<110>)orientations.The Z orientation,with a relatively high volume fraction,dominated the macrotexture.Secondary cryorolling intensified twinning and shear banding,transforming the Copper-type shear bands into Brass-type shear bands with rhomboidal prism morphology.The areas inside the Brasstype shear bands exhibited a Y orientation,and the areas outside the shear bands exhibited a stable Brass-type texture.The evident decrease in the weighted Schmid factors demonstrated that the two-stage cryorolling and intermediate aging treatment can modify the texture evolution and aid the design of high-performance Cu alloys.展开更多
Knowledge distillation(KD) enhances student network generalization by transferring dark knowledge from a complex teacher network. To optimize computational expenditure and memory utilization, self-knowledge distillati...Knowledge distillation(KD) enhances student network generalization by transferring dark knowledge from a complex teacher network. To optimize computational expenditure and memory utilization, self-knowledge distillation(SKD) extracts dark knowledge from the model itself rather than an external teacher network. However, previous SKD methods performed distillation indiscriminately on full datasets, overlooking the analysis of representative samples. In this work, we present a novel two-stage approach to providing targeted knowledge on specific samples, named two-stage approach self-knowledge distillation(TOAST). We first soften the hard targets using class medoids generated based on logit vectors per class. Then, we iteratively distill the under-trained data with past predictions of half the batch size. The two-stage knowledge is linearly combined, efficiently enhancing model performance. Extensive experiments conducted on five backbone architectures show our method is model-agnostic and achieves the best generalization performance.Besides, TOAST is strongly compatible with existing augmentation-based regularization methods. Our method also obtains a speedup of up to 2.95x compared with a recent state-of-the-art method.展开更多
From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling an...From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.展开更多
A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a...A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a dense SrFe_(0.9)Ta_(0.1)O_(3-σ)(SFT)separation layer and a porous Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Cu_(0.1)O_(3-σ)(SFTC)catalytic layer.In thefirst stage reactor,a CO_(2) splitting reaction(CDS:2CO_(2)→2CO+O_(2))occurs at the SFTC catalytic layer.Subsequently,the O_(2) product is selectively extracted through the SFT separation layer to the permeated side for the methane combustion reaction(MCR),which provides an extremely low oxygen partial pressure to enhance the oxygen extraction.In the second stage,a Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Ni_(0.1)O_(3-σ)(SFTN)catalyst is employed to reform the products derived from MCR.The two-stage CMR design results in a remarkable 35.4%CO_(2) conversion for CDS at 900℃.The two-stage CMR was extended to a hollowfiber configuration combining with solar irradiation.The solar-assisted two-stage CMR can operate stably for over 50 h with a high hydrogen yield of 18.1 mL min^(-1) cm^(-2).These results provide a novel strategy for reducing CO_(2) emissions,suggesting potential avenues for the design of the high-performance CMRs and catalysts based on perovskite oxides in the future.展开更多
In this article, we propose efficient methods for solving two stage transshipment problems. Transshipment problem is the special case of Minimum cost flow problem in which arc capacities are infinite. We start by prop...In this article, we propose efficient methods for solving two stage transshipment problems. Transshipment problem is the special case of Minimum cost flow problem in which arc capacities are infinite. We start by proposing a novel problem formulation for a two stage transshipment problem. Later, special structure of our problem formulation is utilized to devise two dual based heuristics solutions with computational complexity of O (n2), and O (n3) respectively. These methods are motivated by the methods developed by Sharma and Saxena [1], Sinha and Sharma [2]. Our methods differ in the initialization and the subsequent variation of the dual variables associated with the transshipment nodes along the shortest path. Lastly, a method is proposed to extract a very good primal solution from the given dual solutions with a computational complexity of O (n2). Efficacy of these methods is demonstrated by our numerical analysis on 200 random problems.展开更多
Escherichia coli MLB(MG1655ΔpflBΔldhA),which can hardly grow on glucose with little succinate accumulation under anaerobic conditions.Two-stage fermentation is a fermentation in which the first stage is used for cel...Escherichia coli MLB(MG1655ΔpflBΔldhA),which can hardly grow on glucose with little succinate accumulation under anaerobic conditions.Two-stage fermentation is a fermentation in which the first stage is used for cell growth and the second stage is used for product production.The ability of glucose consumption and succinate production of MLB under anaerobic conditions can be improved significantly by using acetate as the solo carbon source under aerobic condition during the two-stage fermentation.Then,the adaptive laboratory evolution(ALE)of growing on acetate was applied here.We assumed that the activities of succinate production related enzymes might be further improved in this study.E.coli MLB46-05 evolved from MLB and it had an improved growth phenotype on acetate.Interestingly,in MLB46-05,the yield and tolerance of succinic acid in the anaerobic condition of two-stage fermentation were improved significantly.According to transcriptome analysis,upregulation of the glyoxylate cycle and the activity of stress regulatory factors are the possible reasons for the elevated yield.And the increased tolerance to acetate made it more tolerant to high concentrations of glucose and succinate.Finally,strain MLB46-05 produced 111 g/L of succinic acid with a product yield of 0.74 g/g glucose.展开更多
基金funded by National Natural Science Foundation of China(Project No.52072314,52172321,52102391)China Shenhua Energy Co.,Ltd.,Science and Technology Program(Project No.GJNY-22-7)+2 种基金China State Railway Group Co.,Ltd.Science and Technology Program(P2022×013,K2023×030)Key science and technology projects in the transportation industry of the Ministry of Transport(2022-ZD7-131)the fundamental research funds for the central universities(2682022ZTPY068).
文摘The Traveling Salesman Problem(TSP)is a well-known NP-Hard problem,particularly challenging for conventional solving methods due to the curse of dimensionality in high-dimensional instances.This paper proposes a novel Double-stage Surrogate-assisted Pigeon-inspired Optimization algorithm(DOSA-PIO)to address this issue.DOSA-PIO integrates the ordering points to identify the clustering structure method for data clustering and employs a local surrogate model to assist the evolution of the Pigeon-inspired Optimization(PIO)algorithm.This combination enhances the algorithm’s ability to explore the solution space and converge to optimal solutions more effectively.Additionally,two novel approaches are introduced to extend the generalizability of continuous algorithms for solving discrete problems,enabling the adaptation of continuous optimization techniques to the discrete nature of TSP.Extensive experiments using benchmark functions and high-dimensional TSP instances demonstrate that DOSA-PIO significantly outperforms comparative algorithms in various dimensions(10D,20D,30D,50D,and 100D).The proposed algorithm provides superior solutions compared to traditional methods,highlighting its potential for solving high-dimensional TSPs.By leveraging advanced data clustering techniques and surrogate-assisted optimization,DOSA-PIO offers an effective solution for high-dimensional TSP instances,with experimental results confirming its superior performance and potential for practical applications in complex optimization problems.
基金supported by the National Key R&D Program of China(No.2021YFB3400900)the National Natural Science Foundation of China(Nos.52175373,52205435)+1 种基金Natural Science Foundation of Hunan Province,China(No.2022JJ40621)the Innovation Fund of National Commercial Aircraft Manufacturing Engineering Technology Center,China(No.COMACSFGS-2022-1875)。
文摘A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary micro-variables evolution at different temperatures and their interaction.The dislocation density was incorporated into the model to capture the effect of creep deformation on precipitation.Quantitative transmission electron microscopy and experimental data obtained from a previous study were used to calibrate the model.Subsequently,the developed constitutive model was implemented in the finite element(FE)software ABAQUS via the user subroutines for TSCA process simulation and the springback prediction of an integral panel.A TSCA test was performed.The result shows that the maximum radius deviation between the formed plate and the simulation results is less than 0.4 mm,thus validating the effectiveness of the developed constitutive model and FE model.
基金Supported by the Guangxi Natural Science Foundation (2024GXNSFBA010345)the Innovation and Entrepreneurship Training Program of Guangxi Minzu University (S202310608001)。
文摘This paper extends the quantitative stability results to a more general class of two-stage stochastic variational inequality problems(TSVIP).The existence of solutions to the TSVIP is discussed,and the quantitative relationship between the TSVIP and its distribution perturbed problem is derived.
基金supported by National Natural Science Foundation of China(Grant No.62266028,62266027,U21B2027,and U24A20334)Major Science and Technology Programs in Yunnan Province(Grant No.202302AD080003,202402AG050007,and 202303AP140008)+1 种基金Yunnan Province Basic Research Program(Grant No.202301AS070047,202301AT070471,and 202401BC070021)Kunming University of Science and Technology's"Double First-rate"construction joint project(Grant No.202201BE070001-021).
文摘Lexical analysis is a fundamental task in natural language processing,which involves several subtasks,such as word segmentation(WS),part-of-speech(POS)tagging,and named entity recognition(NER).Recent works have shown that taking advantage of relatedness between these subtasks can be beneficial.This paper proposes a unified neural framework to address these subtasks simultaneously.Apart from the sequence tagging paradigm,the proposed method tackles the multitask lexical analysis via two-stage sequence span classification.Firstly,the model detects the word and named entity boundaries by multilabel classification over character spans in a sentence.Then,the authors assign POS labels and entity labels for words and named entities by multi-class classification,respectively.Furthermore,a Gated Task Transformation(GTT)is proposed to encourage the model to share valuable features between tasks.The performance of the proposed model was evaluated on Chinese and Thai public datasets,demonstrating state-of-the-art results.
基金Project(52274348)supported by the National Natural Science Foundation of ChinaProject(2022JH1/10400024)supported by the Major Projects for the“Revealed Top”Science and Technology of Liaoning Province,China。
文摘Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mechanism of arsenopyrite by evaluating the effects of physical and chemical changes of arsenopyrite in BOS chemical oxidation stage on mineral dissolution kinetics,as well as microbial growth activity and community structure composition in bio-oxidation stage.The results showed that the chemical oxidation contributed to destroying the physical and chemical structure of arsenopyrite surface and reducing the particle size,and led to the formation of nitrogenous substances on mineral surface.These chemical oxidation behaviors effectively promoted Fe^(3+)cycling in the bio-oxidation system and weakened the inhibitory effect of the sulfur film on ionic diffusion,thereby enhancing the dissolution kinetics of the arsenopyrite.Therefore,the bio-oxidation efficiency of arsenopyrite was significantly increased in the two-stage oxidation process.After 18 d,the two-stage oxidation process achieved total extraction rates of(88.8±2.0)%,(86.7±1.3)%,and(74.7±3.0)%for As,Fe,and S elements,respectively.These values represented a significant increase of(50.8±3.4)%,(47.1±2.7)%,and(46.0±0.7)%,respectively,compared to the one-stage bio-oxidation process.
基金the National Natural Science Foundation of China[Grant No.52270183].
文摘Exploring the factors driving the decoupling of China’s sulfur dioxide(SO_(2))emissions from economic growth(DEI)is crucial for achieving sustainable development.By analyzing the decoupling indicators and driving factors at both the generation and treatment stages of SO_(2),more effective targeted mitigation strategies can be developed.We employ the Tapio decoupling model and propose a two-stage method to examine the decoupling issues related to SO_(2).Our findings indicate that:①DEI shows a steady and significant improvement,with SO_(2)emission intensity identified as the primary driver.②for the decoupling of economic growth and SO_(2)generation,energy scale serves as the largest stimulator,while the effect of energy intensity changes from negative to positive,and pollution intensity is first positive and then negative.③For the decoupling of SO_(2)generation and SO_(2)removal,treatment efficiency leads as the largest promoter,followed by treatment intensity.Based on these results,this study recommends that China focuses more on enhancing clean energy utilization and the effectiveness of treatment processes.
基金supported by the National Natural Science Foundation of China(No.62101587)the National Funded Postdoctoral Researcher Program of China(No.GZC20233578)。
文摘Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growing observation demands.The observation Scheduling Problem in the MEOS constellation(MEOSSP)is a challenging issue due to the large number of satellites and tasks,as well as complex observation constraints.To address the large-scale and complicated MEOSSP,we develop a Two-Stage Scheduling Algorithm based on the Pointer Network with Attention mechanism(TSSA-PNA).In TSSA-PNA,the MEOS observation scheduling is decomposed into a task allocation stage and a single-MEOS scheduling stage.In the task allocation stage,an adaptive task allocation algorithm with four problem-specific allocation operators is proposed to reallocate the unscheduled tasks to new MEOSs.Regarding the single-MEOS scheduling stage,we design a pointer network based on the encoder-decoder architecture to learn the optimal singleMEOS scheduling solution and introduce the attention mechanism into the encoder to improve the learning efficiency.The Pointer Network with Attention mechanism(PNA)can generate the single-MEOS scheduling solution quickly in an end-to-end manner.These two decomposed stages are performed iteratively to search for the solution with high profit.A greedy local search algorithm is developed to improve the profits further.The performance of the PNA and TSSA-PNA on singleMEOS and multi-MEOS scheduling problems are evaluated in the experiments.The experimental results demonstrate that PNA can obtain the approximate solution for the single-MEOS scheduling problem in a short time.Besides,the TSSA-PNA can achieve higher observation profits than the existing scheduling algorithms within the acceptable computational time for the large-scale MEOS scheduling problem.
基金This work was supported by the project of the Research on Energy Consumption of Office Space in Colleges and Universities under the“Dual Carbon Target”(No.CJ202301006).
文摘The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-air source heat pump heating system structure that is specifically designed for such regions.The two-stage heat storage device in this heating system expands the storage temperature range of solar heat.The utilization of the two-stage heat storage device not onlymakes up for the instability of the solar heating system,but can also directlymeet the building heating temperature,and can reduce the influence of low-temperature outdoor environments in severe cold regions on the heating performance of the air source heat pump by using solar energy.Therefore,the two-stage phase change heat storage coupled to the solar energy-air source heat pump heating system effectively improves the utilization rate of solar energy.A numerical model of the system components and their integration was developed using TRNSYS software in this study,and various performance aspects of the system were simulated and analyzed.The simulation results demonstrated that the two-stage heat storage device can effectively store solar energy,enabling its hierarchical utilization.The low-temperature solar energy stored by the two-stage phase change heat storage device enhances the coefficient of performance of the air source heat pump by 11.1%in severe cold conditions.Using the Hooke-Jeeves optimization method,the annual cost and carbon emissions are taken as optimization objectives,with the optimized solar heat supply accounting for 52.5%.This study offers valuable insights into operational strategies and site selection for engineering applications,providing a solid theoretical foundation for the widespread implementation of this system in severe cold regions.
基金supported by the science and technology foundation of Guizhou province[2022]general 013the science and technology foundation of Guizhou province[2022]general 014+1 种基金the science and technology foundation of Guizhou province GCC[2022]016-1the educational technology foundation of Guizhou province[2022]043.
文摘Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing renewable-energy consumption and supporting sustainable-energy systems.User participation is central to demand response;however,many users are not inclined to engage actively;therefore,the full potential of demand response remains unrealized.User satisfaction must be prioritized in demand-response assessments.This study proposed a two-stage,capacity-optimization configuration method for user-level energy systems con-sidering thermal inertia and user satisfaction.This method addresses load coordination and complementary issues within the IES and seeks to minimize the annual,total cost for determining equipment capacity configurations while introducing models for system thermal inertia and user satisfaction.Indoor heating is adjusted,for optimizing device output and load profiles,with a focus on typical,daily,economic,and environmental objectives.The studyfindings indicate that the system thermal inertia optimizes energy-system scheduling considering user satisfaction.This optimization mitigates environmental concerns and enhances clean-energy integration.
基金supported by the National Natural Science Foundation of China under Grant 62473328by the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group.
文摘In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integrated with phase change material(PCM)thermal storage is proposed.First,a thermal energy management framework is constructed,combining PCM thermal storage with the alkaline electrolyzer(AE)waste heat recovery and the heat pump(HP),while establishing a PCM-driven waste drying system to enhance the efficiency of waste incineration power generation.Next,a flue gas treatment method based on purification-separation-storage coordination is adopted,achieving spatiotemporal decoupling between waste incineration and flue gas treatment.Subsequently,a two-stage optimal dispatching strategy for the multi-energy system is developed:the first stage establishes a dayahead economic dispatch model with the objective of minimizing net system costs,while the second stage introduces model predictive control(MPC)to realize intraday rolling optimization.Finally,The optimal dispatching strategies under different scenarios are obtained using the Gurobi solver,followed by a comparative analysis of the optimized operational outcomes.Simulation results demonstrate that the proposed system optimizes the output and operational states of each unit,simultaneously reducing carbon trading costs while increasing electricity sales revenue.The proposed scheduling strategy demonstrates effective grid peak-shaving functionality,thereby simultaneously improving the system’s economic performance and operational flexibility while providing an innovative technical pathway for municipal solid waste(MSW)resource utilization and low-carbon transformation of energy systems.
基金supported by the National Natural Science Foundation of China(No.51921004).
文摘The emission regulations for heavy-duty diesel engines regarding nitrogen oxide(NO_(x))are becoming increasingly stringent,particularly in relation to cold start cycles.While the twostage selective catalytic reduction(SCR)has the potential to achieve ultra-low NO_(x) emissions,several challenges remain,including the accurate prediction of ammonia(NH_(3))storage mass and the co-control of the two-stage SCR.The first step in this study involved the establishment of a rapid control prototype platform to facilitate the development and validation of a two-stage SCR control strategy.Secondly,an initial method for predicting the NH_(3) storage based on the mass conservation law was proposed,which was subsequently improved by filling and emptying experiments.The third step involved the development of a two-stage SCR co-control strategy,including obtaining the steady-state NH_(3) storage target value,dynamic correction for NH_(3) storage target value,regulation of NH_(3) storage,and control of the close-coupled SCR urea injector state.Finally,the two-stage SCR urea injection control strategy was certified under the world harmonized transient cycle(WHTC).The results demonstrate that the composite value of engine outlet NO_(x) emissions under cold and hot start WHTC cycles is 13 g/(kW·h).Meanwhile,the composite value of tailpipe NO_(x) emissions under cold and hot start WHTC cycles is 0.065 g/(kW·h),representing only 14%of the EU VI limit value of 0.46 g/(kW·h).Thus,the findings demonstrate that integrating an accurate NH_(3) storage prediction method with the two-stage SCR co-control function is crucial for heavy-duty diesel engines to achieve ultra-low NO_(x) emissions.
基金supported by the National Natural Science Foundation of China(Nos.51978498 and 52131002)the National Key R&D Program of China(No.2019YFC1906301)。
文摘The biotransformation of food waste(FW)to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems.To this end,a promising technique is two-stage anaerobic digestion(TSAD),in which the FW is transformed to biohythane,a gaseous mixture of biomethane and biohydrogen.This review summarises the main characteristics of FW and describes the basic principle of TSAD.Moreover,the factors influencing the TSAD performance are identified,and an overview of the research status;economic aspects;and strategies such as pre-treatment,co-digestion,and regulation of microbial consortia to increase the biohythane yield from TSAD is provided.Additionally,the challenges and future considerations associated with the treatment of FW by TSAD are highlighted.This paper can provide valuable reference for the improvement and widespread implementation of TSAD-based FW treatment.
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.
基金supported by the National Natural Science Foundation of China(Nos.52271025,51927801 and U22A20174)the Science and Technology Planning Project of Liaoning Province(No.2023JH2/101700295)+1 种基金the Innovation Foundation of Science and the Technology of Dalian(No.2023JJ12GX021)the Natural Science Foundation of Jiangsu Province(No.BK20200695)。
文摘This study entailed an investigation of the mechanical properties,microstructural and texture orientation evolutions of Cu-Cr-Co-Ti alloys prepared via twostage cryorolling and intermediate aging treatment.To this end,X-ray diffraction and electron backscatter diffraction were employed.The results indicate that the two-stage cryorolling and intermediate aging treatments led to the development of profuse twin bundles and significantly enhanced the mechanical properties.The initial cryorolling led to coplanar slip and developed a strong Y({111}<112>)orientation,accelerating the formation of Goss({011}<100>)orientation and a Brass-type texture.The intermediate aging treatment relieved the restriction on dislocation slip and reoriented the grains toward the Copper({112}<111>)and Z({111}<110>)orientations.The Z orientation,with a relatively high volume fraction,dominated the macrotexture.Secondary cryorolling intensified twinning and shear banding,transforming the Copper-type shear bands into Brass-type shear bands with rhomboidal prism morphology.The areas inside the Brasstype shear bands exhibited a Y orientation,and the areas outside the shear bands exhibited a stable Brass-type texture.The evident decrease in the weighted Schmid factors demonstrated that the two-stage cryorolling and intermediate aging treatment can modify the texture evolution and aid the design of high-performance Cu alloys.
基金supported by the National Natural Science Foundation of China (62176061)。
文摘Knowledge distillation(KD) enhances student network generalization by transferring dark knowledge from a complex teacher network. To optimize computational expenditure and memory utilization, self-knowledge distillation(SKD) extracts dark knowledge from the model itself rather than an external teacher network. However, previous SKD methods performed distillation indiscriminately on full datasets, overlooking the analysis of representative samples. In this work, we present a novel two-stage approach to providing targeted knowledge on specific samples, named two-stage approach self-knowledge distillation(TOAST). We first soften the hard targets using class medoids generated based on logit vectors per class. Then, we iteratively distill the under-trained data with past predictions of half the batch size. The two-stage knowledge is linearly combined, efficiently enhancing model performance. Extensive experiments conducted on five backbone architectures show our method is model-agnostic and achieves the best generalization performance.Besides, TOAST is strongly compatible with existing augmentation-based regularization methods. Our method also obtains a speedup of up to 2.95x compared with a recent state-of-the-art method.
基金supported in part by the National Natural Science Foundation of China(51977127)Shanghai Municipal Science and Technology Commission(19020500800)“Shuguang Program”(20SG52)Shanghai Education Development Foundation and Shanghai Municipal Education Commission.
文摘From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.
基金supported by the National Key Research and Development Program of China(2022YFE0101600)the National Natural Science Foundation of China(U23A20117)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20220002,BE2022024)the Leading Talents Program of Zhejiang Province(2024C03223)Topnotch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP).
文摘A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a dense SrFe_(0.9)Ta_(0.1)O_(3-σ)(SFT)separation layer and a porous Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Cu_(0.1)O_(3-σ)(SFTC)catalytic layer.In thefirst stage reactor,a CO_(2) splitting reaction(CDS:2CO_(2)→2CO+O_(2))occurs at the SFTC catalytic layer.Subsequently,the O_(2) product is selectively extracted through the SFT separation layer to the permeated side for the methane combustion reaction(MCR),which provides an extremely low oxygen partial pressure to enhance the oxygen extraction.In the second stage,a Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Ni_(0.1)O_(3-σ)(SFTN)catalyst is employed to reform the products derived from MCR.The two-stage CMR design results in a remarkable 35.4%CO_(2) conversion for CDS at 900℃.The two-stage CMR was extended to a hollowfiber configuration combining with solar irradiation.The solar-assisted two-stage CMR can operate stably for over 50 h with a high hydrogen yield of 18.1 mL min^(-1) cm^(-2).These results provide a novel strategy for reducing CO_(2) emissions,suggesting potential avenues for the design of the high-performance CMRs and catalysts based on perovskite oxides in the future.
文摘In this article, we propose efficient methods for solving two stage transshipment problems. Transshipment problem is the special case of Minimum cost flow problem in which arc capacities are infinite. We start by proposing a novel problem formulation for a two stage transshipment problem. Later, special structure of our problem formulation is utilized to devise two dual based heuristics solutions with computational complexity of O (n2), and O (n3) respectively. These methods are motivated by the methods developed by Sharma and Saxena [1], Sinha and Sharma [2]. Our methods differ in the initialization and the subsequent variation of the dual variables associated with the transshipment nodes along the shortest path. Lastly, a method is proposed to extract a very good primal solution from the given dual solutions with a computational complexity of O (n2). Efficacy of these methods is demonstrated by our numerical analysis on 200 random problems.
基金supported by the National Key R&D Program of China(2021YFC2101300)Science and Technology Commission of Shanghai Municipality(21DZ1209100)Partially supported by Open Funding Project of the State Key Laboratory of Bioreactor Engineering.
文摘Escherichia coli MLB(MG1655ΔpflBΔldhA),which can hardly grow on glucose with little succinate accumulation under anaerobic conditions.Two-stage fermentation is a fermentation in which the first stage is used for cell growth and the second stage is used for product production.The ability of glucose consumption and succinate production of MLB under anaerobic conditions can be improved significantly by using acetate as the solo carbon source under aerobic condition during the two-stage fermentation.Then,the adaptive laboratory evolution(ALE)of growing on acetate was applied here.We assumed that the activities of succinate production related enzymes might be further improved in this study.E.coli MLB46-05 evolved from MLB and it had an improved growth phenotype on acetate.Interestingly,in MLB46-05,the yield and tolerance of succinic acid in the anaerobic condition of two-stage fermentation were improved significantly.According to transcriptome analysis,upregulation of the glyoxylate cycle and the activity of stress regulatory factors are the possible reasons for the elevated yield.And the increased tolerance to acetate made it more tolerant to high concentrations of glucose and succinate.Finally,strain MLB46-05 produced 111 g/L of succinic acid with a product yield of 0.74 g/g glucose.