期刊文献+
共找到369,182篇文章
< 1 2 250 >
每页显示 20 50 100
Two-stage optimization of route,speed,and energy management for hybrid energy ship under sea conditions
1
作者 Xiaoyuan Luo Jiaxuan Wang +1 位作者 Xinyu Wang Xinping Guan 《iEnergy》 2025年第3期174-192,共19页
As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions an... As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group. 展开更多
关键词 Hybrid ship power system two-stage optimization dispatch speed scheduling sea conditions modified A-star algorithm improved grey wolf optimization algorithm
在线阅读 下载PDF
A two-stage optimization method for unmanned aerial vehicle inspection of an oil and gas pipeline network 被引量:7
2
作者 Yamin Yan Yongtu Liang +4 位作者 Haoran Zhang Wan Zhang Huixia Feng Bohong Wang Qi Liao 《Petroleum Science》 SCIE CAS CSCD 2019年第2期458-468,共11页
Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implem... Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implemented to minimize the risk of leakage, spill and theft, as well as documenting actual incidents. In recent years, unmanned aerial vehicles have been recognized as a promising option for inspection due to their high efficiency. However, the integrated optimization of unmanned aerial vehicle inspection for oil and gas pipeline networks, including physical feasibility, the performance of mission, cooperation, real-time implementation and three-dimensional(3-D) space, is a strategic problem due to its large-scale,complexity as well as the need for efficiency. In this work, a novel mixed-integer nonlinear programming model is proposed that takes into account the constraints of the mission scenario and the safety performance of unmanned aerial vehicles. To minimize the total length of the inspection path, the model is solved by a two-stage solution method. Finally, a virtual pipeline network and a practical pipeline network are set as two examples to demonstrate the performance of the optimization schemes. Moreover, compared with the traditional genetic algorithm and simulated annealing algorithm, the self-adaptive genetic simulated annealing algorithm proposed in this paper provides strong stability. 展开更多
关键词 PIPELINE network Unmanned AERIAL vehicle INSPECTION MIXED-INTEGER nonlinear PROGRAMMING two-stage solution
原文传递
Study on Optimization of Two-Stage Phase Change Heat Storage Coupled Solar-Air Source Heat Pump Heating System in Severe Cold Region
3
作者 Xueli Wang Yan Jia Degong Zuo 《Energy Engineering》 2025年第4期1603-1627,共25页
The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-... The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-air source heat pump heating system structure that is specifically designed for such regions.The two-stage heat storage device in this heating system expands the storage temperature range of solar heat.The utilization of the two-stage heat storage device not onlymakes up for the instability of the solar heating system,but can also directlymeet the building heating temperature,and can reduce the influence of low-temperature outdoor environments in severe cold regions on the heating performance of the air source heat pump by using solar energy.Therefore,the two-stage phase change heat storage coupled to the solar energy-air source heat pump heating system effectively improves the utilization rate of solar energy.A numerical model of the system components and their integration was developed using TRNSYS software in this study,and various performance aspects of the system were simulated and analyzed.The simulation results demonstrated that the two-stage heat storage device can effectively store solar energy,enabling its hierarchical utilization.The low-temperature solar energy stored by the two-stage phase change heat storage device enhances the coefficient of performance of the air source heat pump by 11.1%in severe cold conditions.Using the Hooke-Jeeves optimization method,the annual cost and carbon emissions are taken as optimization objectives,with the optimized solar heat supply accounting for 52.5%.This study offers valuable insights into operational strategies and site selection for engineering applications,providing a solid theoretical foundation for the widespread implementation of this system in severe cold regions. 展开更多
关键词 two-stage heat storage building heating Hooke-Jeeves optimization phase change heat storage device severe cold region
在线阅读 下载PDF
Two-Stage capacity allocation optimization method for user-level integrated energy systems considering user satisfaction and thermal inertia
4
作者 Shunyu Li Jing Zhang +5 位作者 Yu He Gang Lv Ying Liu Xiangxie Hu Zhiyang Wang Xuan Ao 《Global Energy Interconnection》 2025年第2期300-315,共16页
Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing r... Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing renewable-energy consumption and supporting sustainable-energy systems.User participation is central to demand response;however,many users are not inclined to engage actively;therefore,the full potential of demand response remains unrealized.User satisfaction must be prioritized in demand-response assessments.This study proposed a two-stage,capacity-optimization configuration method for user-level energy systems con-sidering thermal inertia and user satisfaction.This method addresses load coordination and complementary issues within the IES and seeks to minimize the annual,total cost for determining equipment capacity configurations while introducing models for system thermal inertia and user satisfaction.Indoor heating is adjusted,for optimizing device output and load profiles,with a focus on typical,daily,economic,and environmental objectives.The studyfindings indicate that the system thermal inertia optimizes energy-system scheduling considering user satisfaction.This optimization mitigates environmental concerns and enhances clean-energy integration. 展开更多
关键词 Integrated energy system Demand response User satisfaction Thermal inertia two-stage capacity-optimization configuration method Clean energy integration
在线阅读 下载PDF
Real-Time Pricing for Smart Grid with Multiple Companies and Multiple Users Using Two-Stage Optimization 被引量:2
5
作者 Li TAO Yan GAO 《Journal of Systems Science and Information》 CSCD 2018年第5期435-446,共12页
In this paper, we focus on the real-time interactions among multiple utility companies and multiple users and formulate real-time pricing(RTP) as a two-stage optimization problem. At the first stage, based on cost fun... In this paper, we focus on the real-time interactions among multiple utility companies and multiple users and formulate real-time pricing(RTP) as a two-stage optimization problem. At the first stage, based on cost function, we propose a continuous supply function bidding mechanism to model the utility companies’ profit maximization problem, by which the analytic expression of electricity price is further derived. At the second stage, considering that individually optimal solution may not be socially optimal, we employ convex optimization with linear constraints to model the price anticipating users’ daily payoff maximum. Substitute the analytic expression of electricity price obtained at the first stage into the optimization problem at the second stage. Using customized proximal point algorithm(C-PPA), the optimization problem at the second stage is solved and electricity price is obtained accordingly. We also prove the existence and uniqueness of the Nash equilibrium in the mentioned twostage optimization and the convergence of C-PPA. In addition, in order to make the algorithm more practical, a statistical approach is used to obtain the function of price only through online information exchange, instead of solving it directly. The proposed approach offers RTP, power production and load scheduling for multiple utility companies and multiple users in smart grid. Statistical approach helps to protect the company’s privacy and avoid the interference of random factors, and C-PPA has an advantage over Lagrangian algorithm because the former need not obtain the objection function of the dual optimization problem by solving an optimization problem with parameters. Simulation results show that the proposed framework can significantly reduce peak time loading and efficiently balance system energy distribution. 展开更多
关键词 smart grid real-time pricing customized proximal point algorithm multiple utility companies and multiple users two-stage optimization
原文传递
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
6
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
Two-Stage Optimal Dispatching of Electricity-Hydrogen-Waste Multi-Energy System with Phase Change Material Thermal Storage
7
作者 Linwei Yao Xiangning Lin +1 位作者 Huashen He Jiahui Yang 《Energy Engineering》 2025年第8期3285-3308,共24页
In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integra... In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integrated with phase change material(PCM)thermal storage is proposed.First,a thermal energy management framework is constructed,combining PCM thermal storage with the alkaline electrolyzer(AE)waste heat recovery and the heat pump(HP),while establishing a PCM-driven waste drying system to enhance the efficiency of waste incineration power generation.Next,a flue gas treatment method based on purification-separation-storage coordination is adopted,achieving spatiotemporal decoupling between waste incineration and flue gas treatment.Subsequently,a two-stage optimal dispatching strategy for the multi-energy system is developed:the first stage establishes a dayahead economic dispatch model with the objective of minimizing net system costs,while the second stage introduces model predictive control(MPC)to realize intraday rolling optimization.Finally,The optimal dispatching strategies under different scenarios are obtained using the Gurobi solver,followed by a comparative analysis of the optimized operational outcomes.Simulation results demonstrate that the proposed system optimizes the output and operational states of each unit,simultaneously reducing carbon trading costs while increasing electricity sales revenue.The proposed scheduling strategy demonstrates effective grid peak-shaving functionality,thereby simultaneously improving the system’s economic performance and operational flexibility while providing an innovative technical pathway for municipal solid waste(MSW)resource utilization and low-carbon transformation of energy systems. 展开更多
关键词 Waste incineration power plant waste drying phase change material thermal storage alkaline electrolyzer waste heat recovery two-stage optimal dispatching
在线阅读 下载PDF
Multi-objective optimization for leaching process using improved two-stage guide PSO algorithm 被引量:8
8
作者 胡广浩 毛志忠 何大阔 《Journal of Central South University》 SCIE EI CAS 2011年第4期1200-1210,共11页
A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated ... A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively. 展开更多
关键词 leaching process MODELING multi-objective optimization two-stage guide EXPERIMENT
在线阅读 下载PDF
Collaborative optimization of exhaust gas recirculation and Miller cycle of two-stage turbocharged marine diesel engines based on particle swarm optimization 被引量:3
9
作者 TANG Xu-yang WANG Peng +3 位作者 ZHANG Zhong-yuan ZHANG Feng-li SHI Lei DENG Kang-yao 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2142-2156,共15页
To meet increasingly stringent emission standards and lower the brake-specific fuel consumption(BSFC)of marine engines,a collaborative optimization study of exhaust gas recirculation(EGR)and a Miller cycle coupled tur... To meet increasingly stringent emission standards and lower the brake-specific fuel consumption(BSFC)of marine engines,a collaborative optimization study of exhaust gas recirculation(EGR)and a Miller cycle coupled turbocharging system was carried out.In this study,a one-dimensional numerical model of the EGR,Miller cycle,and adjustable two-stage turbocharged engine based on WeiChai 6170 marine diesel engine was established.The particle swarm optimization algorithm was used to achieve multi-input and multi-objective comprehensive optimization,and the effects of EGR-coupled Miller regulation and high-pressure turbine bypass regulation on NO_(x)and BSFC were investigated.The results showed that a medium EGR rate-coupled medium Miller degree was better for the comprehensive optimization of NO_(x)and BSFC.At medium EGR rate and low turbine bypass rates,NO_(x)and BSFC were relatively balanced and acceptable.Finally,an optimal steady-state control strategy under full loads was proposed.With an increase in loads,the optimized turbine bypass rate and Miller degree gradually increased.Compared with the EGRonly system,the optimal system of EGR and Miller cycle coupled turbine bypass reduced NO_(x)by 0.87 g/(kW·h)and BSFC by 17.19 g/(kW·h)at 100%load.Therefore,the EGR and Miller cycle coupled adjustable two-stage turbocharging achieves NO_(x)and BSFC optimization under full loads. 展开更多
关键词 exhaust gas recirculation(EGR) Miller cycle NO_(x)emissions adjustable two-stage turbocharging particle swarm optimization
在线阅读 下载PDF
Two-Stage Robust Optimization Under Decision Dependent Uncertainty 被引量:1
10
作者 Yunfan Zhang Feng Liu +3 位作者 Yifan Su Yue Chen Zhaojian Wang João P.S.Catalão 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1295-1306,共12页
In the conventional robust optimization(RO)context,the uncertainty is regarded as residing in a predetermined and fixed uncertainty set.In many applications,however,uncertainties are affected by decisions,making the c... In the conventional robust optimization(RO)context,the uncertainty is regarded as residing in a predetermined and fixed uncertainty set.In many applications,however,uncertainties are affected by decisions,making the current RO framework inapplicable.This paper investigates a class of two-stage RO problems that involve decision-dependent uncertainties.We introduce a class of polyhedral uncertainty sets whose right-hand-side vector has a dependency on the here-and-now decisions and seek to derive the exact optimal wait-and-see decisions for the second-stage problem.A novel iterative algorithm based on the Benders dual decomposition is proposed where advanced optimality cuts and feasibility cuts are designed to incorporate the uncertainty-decision coupling.The computational tractability,robust feasibility and optimality,and convergence performance of the proposed algorithm are guaranteed with theoretical proof.Four motivating application examples that feature the decision-dependent uncertainties are provided.Finally,the proposed solution methodology is verified by conducting case studies on the pre-disaster highway investment problem. 展开更多
关键词 Benders decomposition decision-dependent uncertainty endogenous uncertainty robust optimization(RO)
在线阅读 下载PDF
Optimization Design of Two-Stage Operational Amplifier with Frequency Compensation via Geometric Programming
11
作者 李丹 戎蒙恬 殳国华 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第6期648-651,共4页
An optimization design technique to obtain global solution for a two-stage operational amplifier(op-amp) with frequency compensation is presented.This frequency compensation technique can adjust the equivalent resista... An optimization design technique to obtain global solution for a two-stage operational amplifier(op-amp) with frequency compensation is presented.This frequency compensation technique can adjust the equivalent resistance to guarantee that the phase margin is stable even though circumstance temperature varies.Geometric programming is used to optimize the component values and transistor dimensions.It is used in this analog integrated circuit design to calculate these parameters automatically.This globally optimal amplifier obtains minimum power while other specifications are fulfilled. 展开更多
关键词 frequency compensation two-stage operational amplifier(op-amp) geometric programming global optimization
原文传递
Optimization design of two-stage amplification micro-drive system without additional motion based on particle swarm optimization algorithm
12
作者 Manzhi Yang Kaiyang Wei +4 位作者 Chuanwei Zhang Dandan Liu Yizhi Yang Feiyan Han Shuanfeng Zhao 《Visual Computing for Industry,Biomedicine,and Art》 EI 2022年第1期340-351,共12页
With the increasing requirements of precision mechanical systems in electronic packaging,ultra-precision machining,biomedicine and other high-tech fields,it is necessary to study a precision two-stage amplification mi... With the increasing requirements of precision mechanical systems in electronic packaging,ultra-precision machining,biomedicine and other high-tech fields,it is necessary to study a precision two-stage amplification micro-drive system that can safely provide high precision and a large amplification ratio.In view of the disadvantages of the current two-stage amplification and micro-drive system,such as poor security,low motion accuracy and limited amplification ratio,an optimization design of a precise symmetrical two-stage amplification micro-drive system was completed in this study,and its related performance was studied.Based on the guiding principle of the flexure hinge,a two-stage amplification micro-drive mechanism with no parasitic motion or non-motion direction force was designed.In addition,the structure optimization design of the mechanism was completed using the particle swarm optimization algorithm,which increased the amplification ratio of the mechanism from 5 to 18 times.A precise symmetrical two-stage amplification system was designed using a piezoelectric ceramic actuator and two-stage amplification micro-drive mechanism as the micro-driver and actuator,respectively.The driving,strength,and motion performances of the system were subsequently studied.The results showed that the driving linearity of the system was high,the strength satisfied the design requirements,the motion amplification ratio was high and the motion accuracy was high(relative error was 5.31%).The research in this study can promote the optimization of micro-drive systems. 展开更多
关键词 Particle swarm optimization Micro-drive mechanism two-stage amplification optimization design Performance of guidance
在线阅读 下载PDF
Two-stage robust optimization of power cost minimization problem in gunbarrel natural gas networks by approximate dynamic programming 被引量:1
13
作者 Yi-Ze Meng Ruo-Ran Chen Tian-Hu Deng 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2497-2517,共21页
In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas ... In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties. 展开更多
关键词 Natural gas Gunbarrel gas pipeline networks Robust optimization Approximate dynamic programming
原文传递
Identifying influential spreaders in social networks: A two-stage quantum-behaved particle swarm optimization with Lévy flight
14
作者 卢鹏丽 揽继茂 +3 位作者 唐建新 张莉 宋仕辉 朱虹羽 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期743-754,共12页
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ... The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms. 展开更多
关键词 social networks influence maximization metaheuristic optimization quantum-behaved particle swarm optimization Lévy flight
原文传递
Design and Multicriteria Optimization of a Two-Stage Reactive Extrusion Process for the Synthesis of Thermoplastic Polyurethanes
15
作者 Sandrine Hoppe Dimitrios Meimaroglou +2 位作者 Mauricio Camargo Christian Fonteix Fernand Pla 《Engineering(科研)》 2012年第9期497-514,共18页
This paper presents the implementation of two multicriteria optimization methods based on different approaches, namely, Rough Set Method (RSM) and Net Flow Method (NFM), to the manufacture by reactive extrusion of lin... This paper presents the implementation of two multicriteria optimization methods based on different approaches, namely, Rough Set Method (RSM) and Net Flow Method (NFM), to the manufacture by reactive extrusion of linear thermoplastic polyurethanes (TPUs), appropriate for medical applications. A preliminary study allowed determining the process operating conditions for which the polymerization time and the average residence time of the reactants in the extruder are of the same order of magnitude. Prior to the optimization, a neural network model able to predict with acceptable accuracy the effect of the operating conditions on the output process variables, was constructed and validated. This model was then used to determine, using Pareto’s concept, a set of non-dominated solutions constituting Pareto’s domain. These solutions were then ranked according to the preferences of a decision maker using NFM and RSM. This allowed providing the 10% highest ranked solutions of Pareto’s domain and proposing a set of optimal operating conditions for the production, with the lowest energy consumption, of TPUs with targeted properties and high purity. Experimental validation runs carried out under similar operating conditions gave rise to criteria values confirming the su- perior performance of NFM, without rejecting, at the same time, the values obtained using RSM. 展开更多
关键词 REACTIVE EXTRUSION THERMOPLASTIC Polyurethanes Modelling MULTICRITERIA optimization DECISION-MAKING Support
暂未订购
First Order Convergence Analysis for Sparse Grid Method in Stochastic Two-Stage Linear Optimization Problem
16
作者 Shengyuan Chen 《American Journal of Computational Mathematics》 2011年第4期294-302,共9页
Stochastic two-stage linear optimization is an important and widely used optimization model. Efficiency of numerical integration of the second stage value function is critical. However, the second stage value function... Stochastic two-stage linear optimization is an important and widely used optimization model. Efficiency of numerical integration of the second stage value function is critical. However, the second stage value function is piecewise linear convex, which imposes challenges for applying the modern efficient spare grid method. In this paper, we prove the first order convergence rate of the sparse grid method for this important stochastic optimization model, utilizing convexity analysis and measure theory. The result is two-folded: it establishes a theoretical foundation for applying the sparse grid method in stochastic programming, and extends the convergence theory of sparse grid integration method to piecewise linear and convex functions. 展开更多
关键词 Convergence ANALYSIS STOCHASTIC optimization SCENARIO Generation CONVEX ANALYSIS Measure Theory
在线阅读 下载PDF
Sensitivity Analysis of Key Parameters in Decision Making of Two-Stage Evolutionary Optimization Maintenance Strategies
17
作者 Elia A. Tantele Renos A. Votsis Toula Onoufriou 《Open Journal of Civil Engineering》 2014年第4期338-352,共15页
Preventative maintenance (PM) measures for bridges are proactive maintenance actions which aim to prevent or delay a deterioration process that may lead to failure. This type of maintenance can be justified on economi... Preventative maintenance (PM) measures for bridges are proactive maintenance actions which aim to prevent or delay a deterioration process that may lead to failure. This type of maintenance can be justified on economic grounds since it can extend the life of the bridge and avoid the need for unplanned essential/corrective maintenance. Due to the high importance of the effective integration of PM measures in the maintenance strategies of bridges, the authors have developed a two-stage evolutionary optimization methodology based on genetic algorithm (GA) principles which links the probabilistic effectiveness of various PM measures with their costs in order to develop optimum PM strategies. In this paper, the sensitivity of the methodology to various key input parameters of the optimization methodology is examined in order to quantify their effects and identify possible trends in the optimum PM intervention profiles. The results of the sensitivity studies highlight the combined use of both proactive and reactive PM measures in deriving optimum strategy solutions. The precise mix and sequence of PM measures is clearly a function of the relative effectiveness and cost of the different available PM options as well as the various key parameters such as discount rate, target probability of failure, initial probability of failure and service life period examined. While the results highlight the need for more reliable data they also demonstrate the robustness and usefulness of the methodology;in the case where data is limited it can be used as a comparative tool to improve understanding of the effects of various strategies and enhance the decision making process. 展开更多
关键词 Preventative Maintenance CORROSION GENETIC Algorithm optimization REINFORCED CONCRETE BRIDGES Sensitivity Analysis
暂未订购
Demand-Responsive Transportation Vehicle Routing Optimization Based on Two-Stage Method
18
作者 Jingfa Ma Hu Liu Lingxiao Chen 《Computers, Materials & Continua》 SCIE EI 2024年第10期443-469,共27页
Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial pass... Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs.Consequently,there is a need to develop realtime DRT route optimization methods that integrate both initial and real-time requests.This paper presents a twostage,multi-objective optimization model for DRT vehicle scheduling.The first stage involves an initial scheduling model aimed at minimizing vehicle configuration,and operational,and CO_(2)emission costs while ensuring passenger satisfaction.The second stage develops a real-time scheduling model to minimize additional operational costs,penalties for time window violations,and costs due to rejected passengers,thereby addressing real-time demands.Additionally,an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is designed,incorporating multiple crossover points to accelerate convergence and improve solution efficiency.The proposed scheduling model is validated using a real network in Shanghai.Results indicate that realtime scheduling can serve more passengers,and improve vehicle utilization and occupancy rates,with only a minor increase in total operational costs.Compared to the traditional NSGA-II algorithm,the improved version enhances convergence speed by 31.7%and solution speed by 4.8%.The proposed model and algorithm offer both theoretical and practical guidance for real-world DRT scheduling. 展开更多
关键词 Demand responsive transit genetic algorithm muti-objective optimization artificial intelligence applications
在线阅读 下载PDF
Two-stage ADMM-based distributed optimal reactive power control method for wind farms considering wake effects 被引量:4
19
作者 Zhenming Li Zhao Xu +2 位作者 Yawen Xie Donglian Qi Jianliang Zhang 《Global Energy Interconnection》 EI CAS CSCD 2021年第3期251-260,共10页
Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o... Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method. 展开更多
关键词 two-stage optimization Reactive power optimization Grid-connected wind farms Alternating direction method of multipliers(ADMM)
在线阅读 下载PDF
Two-stage prediction and update particle filtering algorithm based on particle weight optimization in multi-sensor observation
20
作者 胡振涛 Liu Xianxing Li Jie 《High Technology Letters》 EI CAS 2014年第1期34-41,共8页
The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive trea... The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 multi-sensor information fusion particle filter weight optimization predictionand update
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部