The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Final...The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Finally, under an algebraic constraint condition, the equivalencebetween the two-stage Kalman estimator and the optimal augmented state Kalman filter is proved.Thereby, the algebraic constraint conditions of optimal two-stage state estimation in the presence ofARMA model random bias are given.展开更多
Blade Tip Timing(BTT)enables non-contact measurements of rotating blades by placing probes strategically.Due to the uneven probe layout,BTT signals exhibit periodic irregularities.While recovering parameters like freq...Blade Tip Timing(BTT)enables non-contact measurements of rotating blades by placing probes strategically.Due to the uneven probe layout,BTT signals exhibit periodic irregularities.While recovering parameters like frequency from such signals is possible,achieving high-precision vibration parameters remains challenging.This paper proposed a novel two-stage off-grid estimation method.It leverages a unique array layout(coprime array)to obtain a regular augmented covariance matrix.Subsequently,parameters in the matrix are recovered using the sparse iterative covariance-based estimation method based on covariance fitting criteria.Finally,high-precision estimates of imprecise parameters are obtained using unconditional maximum likelihood estimation,effectively eliminating the effects of basis mismatch.Through substantial numerical and experimental validation,the proposed method demonstrates significantly higher accuracy compared to classical BTT parameter estimation methods,approaching the lower bound of unbiased estimation variance.Furthermore,due to its immunity to frequency gridding,it can track minor frequency deviations,making it more suitable for indicating blade condition.展开更多
This paper is concerned with the estimating problem of seemingly unrelated (SU) non- parametric regression models. The authors propose a new method to estimate the unknown functions, which is an extension of the two...This paper is concerned with the estimating problem of seemingly unrelated (SU) non- parametric regression models. The authors propose a new method to estimate the unknown functions, which is an extension of the two-stage procedure in the longitudinal data framework. The authors show the resulted estimators are asymptotically normal and more efficient than those based on only the individual regression equation. Some simulation studies are given in support of the asymptotic results. A real data from an ongoing environmental epidemiologie study are used to illustrate the proposed procedure.展开更多
Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in...Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments.展开更多
This paper investigates the problem of two-stage extended Kalman filter (TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems (ACSs). Firstly, based on the separate-bias princ...This paper investigates the problem of two-stage extended Kalman filter (TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems (ACSs). Firstly, based on the separate-bias principle, a satellite ACSs with actuator fault is transformed into an augmented nonlinear discrete stochastic model; then, a novel TSEKF is suggested such that it can simultane- ously estimate satellite attitude information and actuator faults no matter they are additive or mul- tiplicative; finally, the proposed approach is respectively applied to estimating bias faults and loss of effectiveness for reaction flywheels in satellite ACSs, and simulation results demonstrate the effec- tiveness of the proposed fault estimation approach.展开更多
Parameter estimation is defined as the process to adjust or optimize the model parameter using observations.A long-term problem in ensemble-based parameter estimation methods is that the parameters are assumed to be c...Parameter estimation is defined as the process to adjust or optimize the model parameter using observations.A long-term problem in ensemble-based parameter estimation methods is that the parameters are assumed to be constant during model integration.This assumption will cause underestimation of parameter ensemble spread,such that the parameter ensemble tends to collapse before an optimal solution is found.In this work,a two-stage inflation method is developed for parameter estimation,which can address the collapse of parameter ensemble due to the constant evolution of parameters.In the first stage,adaptive inflation is applied to the augmented states,in which the global scalar parameter is transformed to fields with spatial dependence.In the second stage,extra multiplicative inflation is used to inflate the scalar parameter ensemble to compensate for constant parameter evolution,where the inflation factor is determined according to the spread growth ratio of model states.The observation system simulation experiment with Community Earth System Model(CESM)shows that the second stage of the inflation scheme plays a crucial role in successful parameter estimation.With proper multiplicative inflation factors,the parameter estimation can effectively reduce the parameter biases,providing more accurate analyses.展开更多
In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation metrics.In this paper,we aim to reduce the annotation cost of crowd dat...In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation metrics.In this paper,we aim to reduce the annotation cost of crowd datasets,and propose a crowd density estimation method based on weakly-supervised learning,in the absence of crowd position supervision information,which directly reduces the number of crowds by using the number of pedestrians in the image as the supervised information.For this purpose,we design a new training method,which exploits the correlation between global and local image features by incremental learning to train the network.Specifically,we design a parent-child network(PC-Net)focusing on the global and local image respectively,and propose a linear feature calibration structure to train the PC-Net simultaneously,and the child network learns feature transfer factors and feature bias weights,and uses the transfer factors and bias weights to linearly feature calibrate the features extracted from the Parent network,to improve the convergence of the network by using local features hidden in the crowd images.In addition,we use the pyramid vision transformer as the backbone of the PC-Net to extract crowd features at different levels,and design a global-local feature loss function(L2).We combine it with a crowd counting loss(LC)to enhance the sensitivity of the network to crowd features during the training process,which effectively improves the accuracy of crowd density estimation.The experimental results show that the PC-Net significantly reduces the gap between fullysupervised and weakly-supervised crowd density estimation,and outperforms the comparison methods on five datasets of Shanghai Tech Part A,ShanghaiTech Part B,UCF_CC_50,UCF_QNRF and JHU-CROWD++.展开更多
Success-failure life tests are widely used in reliability engineering research to evaluate the storage life of products, where the observed data are the current status data, usually summarized as the form of "binomia...Success-failure life tests are widely used in reliability engineering research to evaluate the storage life of products, where the observed data are the current status data, usually summarized as the form of "binomial life data". For this type of data, this paper proposes a two-stage algorithm to estimate some commonly used lifetime distributions. This Mgorithm is automatic, intuitively appealing and simple to implement. Simulation studies show that compared with some existing methods, the proposed algorithm is more stable and efficient, especially in small sample situations, and it can also be extended to deM with some complicated lifetime distributions.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per...The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions.展开更多
Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,Sou...Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,South Korea,Europe,and North America.Since old age is the most significant predictor of dementia,global healthcare systems must rise to the challenge of providing care for those with neurodegenerative disorders.展开更多
A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary ...A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary micro-variables evolution at different temperatures and their interaction.The dislocation density was incorporated into the model to capture the effect of creep deformation on precipitation.Quantitative transmission electron microscopy and experimental data obtained from a previous study were used to calibrate the model.Subsequently,the developed constitutive model was implemented in the finite element(FE)software ABAQUS via the user subroutines for TSCA process simulation and the springback prediction of an integral panel.A TSCA test was performed.The result shows that the maximum radius deviation between the formed plate and the simulation results is less than 0.4 mm,thus validating the effectiveness of the developed constitutive model and FE model.展开更多
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper...Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.展开更多
Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capa...Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.展开更多
Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton s...Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton structure information is not utilized and multi-view pose information is not completely fused.Moreover,existing graph convolutional operations do not consider the specificity of different joints and different views of pose information when processing skeleton graphs,making the correlation weights between nodes in the graph and their neighborhood nodes shared.Existing Graph Convolutional Networks(GCNs)cannot extract global and deeplevel skeleton structure information and view correlations efficiently.To solve these problems,pre-estimated multiview 2D poses are designed as a multi-view skeleton graph to fuse skeleton priors and view correlations explicitly to process occlusion problem,with the skeleton-edge and symmetry-edge representing the structure correlations between adjacent joints in each viewof skeleton graph and the view-edge representing the view correlations between the same joints in different views.To make graph convolution operation mine elaborate and sufficient skeleton structure information and view correlations,different correlation weights are assigned to different categories of neighborhood nodes and further assigned to each node in the graph.Based on the graph convolution operation proposed above,a Residual Graph Convolution(RGC)module is designed as the basic module to be combined with the simplified Hourglass architecture to construct the Hourglass-GCN as our 3D pose estimation network.Hourglass-GCNwith a symmetrical and concise architecture processes three scales ofmulti-viewskeleton graphs to extract local-to-global scale and shallow-to-deep level skeleton features efficiently.Experimental results on common large 3D pose dataset Human3.6M and MPI-INF-3DHP show that Hourglass-GCN outperforms some excellent methods in 3D pose estimation accuracy.展开更多
The optimal conditions for two-stage Kalman estimator with random bias of anARMA model is considered in this paper.First,the optimal augmented state Kalman fil-ter and the two-stage Kalman estimator are given.Second,u...The optimal conditions for two-stage Kalman estimator with random bias of anARMA model is considered in this paper.First,the optimal augmented state Kalman fil-ter and the two-stage Kalman estimator are given.Second,under an algebraic constraint,the equivalence between the two-stage Kalman estimator and the optimal augmented stateKalman filter is proved.Finally,because the given algebraic constraint are restrictive inpractice,the results thus obtained implies that two-stage Kalman estimator is suboptimal.展开更多
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user...The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.展开更多
The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessar...The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods.展开更多
Lexical analysis is a fundamental task in natural language processing,which involves several subtasks,such as word segmentation(WS),part-of-speech(POS)tagging,and named entity recognition(NER).Recent works have shown ...Lexical analysis is a fundamental task in natural language processing,which involves several subtasks,such as word segmentation(WS),part-of-speech(POS)tagging,and named entity recognition(NER).Recent works have shown that taking advantage of relatedness between these subtasks can be beneficial.This paper proposes a unified neural framework to address these subtasks simultaneously.Apart from the sequence tagging paradigm,the proposed method tackles the multitask lexical analysis via two-stage sequence span classification.Firstly,the model detects the word and named entity boundaries by multilabel classification over character spans in a sentence.Then,the authors assign POS labels and entity labels for words and named entities by multi-class classification,respectively.Furthermore,a Gated Task Transformation(GTT)is proposed to encourage the model to share valuable features between tasks.The performance of the proposed model was evaluated on Chinese and Thai public datasets,demonstrating state-of-the-art results.展开更多
文摘The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Finally, under an algebraic constraint condition, the equivalencebetween the two-stage Kalman estimator and the optimal augmented state Kalman filter is proved.Thereby, the algebraic constraint conditions of optimal two-stage state estimation in the presence ofARMA model random bias are given.
基金the National Natural Science Foundation of China(Nos.52105117,52222504&51875433)the Funds for Distinguished Young talent of Shaanxi Province,China(No.2019JC-04)。
文摘Blade Tip Timing(BTT)enables non-contact measurements of rotating blades by placing probes strategically.Due to the uneven probe layout,BTT signals exhibit periodic irregularities.While recovering parameters like frequency from such signals is possible,achieving high-precision vibration parameters remains challenging.This paper proposed a novel two-stage off-grid estimation method.It leverages a unique array layout(coprime array)to obtain a regular augmented covariance matrix.Subsequently,parameters in the matrix are recovered using the sparse iterative covariance-based estimation method based on covariance fitting criteria.Finally,high-precision estimates of imprecise parameters are obtained using unconditional maximum likelihood estimation,effectively eliminating the effects of basis mismatch.Through substantial numerical and experimental validation,the proposed method demonstrates significantly higher accuracy compared to classical BTT parameter estimation methods,approaching the lower bound of unbiased estimation variance.Furthermore,due to its immunity to frequency gridding,it can track minor frequency deviations,making it more suitable for indicating blade condition.
基金The research was supported in part by National Natural Science Foundation of China (NSFC) under Grants No. 10471140 and No. 10731010, the National Basic Research Program of China (973 Program) under Grant No. 2007CB814902, and Science Fund for Creative Research Groups.
文摘This paper is concerned with the estimating problem of seemingly unrelated (SU) non- parametric regression models. The authors propose a new method to estimate the unknown functions, which is an extension of the two-stage procedure in the longitudinal data framework. The authors show the resulted estimators are asymptotically normal and more efficient than those based on only the individual regression equation. Some simulation studies are given in support of the asymptotic results. A real data from an ongoing environmental epidemiologie study are used to illustrate the proposed procedure.
基金Supported by the State Key Laboratory of Acoustics and Marine Information Chinese Academy of Sciences(SKL A202507).
文摘Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments.
文摘This paper investigates the problem of two-stage extended Kalman filter (TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems (ACSs). Firstly, based on the separate-bias principle, a satellite ACSs with actuator fault is transformed into an augmented nonlinear discrete stochastic model; then, a novel TSEKF is suggested such that it can simultane- ously estimate satellite attitude information and actuator faults no matter they are additive or mul- tiplicative; finally, the proposed approach is respectively applied to estimating bias faults and loss of effectiveness for reaction flywheels in satellite ACSs, and simulation results demonstrate the effec- tiveness of the proposed fault estimation approach.
基金The National Key Research and Development Program under contract No.2017YFA0604202the Fundamental Research Funds for the Central Universities under contract No.B210201022the National Natural Science Foundation of China under contract Nos 42176003,41690124,41806032 and 41806038.
文摘Parameter estimation is defined as the process to adjust or optimize the model parameter using observations.A long-term problem in ensemble-based parameter estimation methods is that the parameters are assumed to be constant during model integration.This assumption will cause underestimation of parameter ensemble spread,such that the parameter ensemble tends to collapse before an optimal solution is found.In this work,a two-stage inflation method is developed for parameter estimation,which can address the collapse of parameter ensemble due to the constant evolution of parameters.In the first stage,adaptive inflation is applied to the augmented states,in which the global scalar parameter is transformed to fields with spatial dependence.In the second stage,extra multiplicative inflation is used to inflate the scalar parameter ensemble to compensate for constant parameter evolution,where the inflation factor is determined according to the spread growth ratio of model states.The observation system simulation experiment with Community Earth System Model(CESM)shows that the second stage of the inflation scheme plays a crucial role in successful parameter estimation.With proper multiplicative inflation factors,the parameter estimation can effectively reduce the parameter biases,providing more accurate analyses.
基金the Humanities and Social Science Fund of the Ministry of Education of China(21YJAZH077)。
文摘In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation metrics.In this paper,we aim to reduce the annotation cost of crowd datasets,and propose a crowd density estimation method based on weakly-supervised learning,in the absence of crowd position supervision information,which directly reduces the number of crowds by using the number of pedestrians in the image as the supervised information.For this purpose,we design a new training method,which exploits the correlation between global and local image features by incremental learning to train the network.Specifically,we design a parent-child network(PC-Net)focusing on the global and local image respectively,and propose a linear feature calibration structure to train the PC-Net simultaneously,and the child network learns feature transfer factors and feature bias weights,and uses the transfer factors and bias weights to linearly feature calibrate the features extracted from the Parent network,to improve the convergence of the network by using local features hidden in the crowd images.In addition,we use the pyramid vision transformer as the backbone of the PC-Net to extract crowd features at different levels,and design a global-local feature loss function(L2).We combine it with a crowd counting loss(LC)to enhance the sensitivity of the network to crowd features during the training process,which effectively improves the accuracy of crowd density estimation.The experimental results show that the PC-Net significantly reduces the gap between fullysupervised and weakly-supervised crowd density estimation,and outperforms the comparison methods on five datasets of Shanghai Tech Part A,ShanghaiTech Part B,UCF_CC_50,UCF_QNRF and JHU-CROWD++.
基金supported by National Natural Science Foundation of China under Grant No. 11001097
文摘Success-failure life tests are widely used in reliability engineering research to evaluate the storage life of products, where the observed data are the current status data, usually summarized as the form of "binomial life data". For this type of data, this paper proposes a two-stage algorithm to estimate some commonly used lifetime distributions. This Mgorithm is automatic, intuitively appealing and simple to implement. Simulation studies show that compared with some existing methods, the proposed algorithm is more stable and efficient, especially in small sample situations, and it can also be extended to deM with some complicated lifetime distributions.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
基金National Natural Science Foundation of China (52075420)Fundamental Research Funds for the Central Universities (xzy022023049)National Key Research and Development Program of China (2023YFB3408600)。
文摘The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions.
基金funded by the Natural Sciences and Engineering Research Council of Canada(RGPIN:2016-05964&2023-04283 to JHK)the University of Manitoba Tri-Agency Bridge Funding(#57289 to JHK)the Ricard Foundation’s Baxter Bursary(to JP)。
文摘Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,South Korea,Europe,and North America.Since old age is the most significant predictor of dementia,global healthcare systems must rise to the challenge of providing care for those with neurodegenerative disorders.
基金supported by the National Key R&D Program of China(No.2021YFB3400900)the National Natural Science Foundation of China(Nos.52175373,52205435)+1 种基金Natural Science Foundation of Hunan Province,China(No.2022JJ40621)the Innovation Fund of National Commercial Aircraft Manufacturing Engineering Technology Center,China(No.COMACSFGS-2022-1875)。
文摘A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary micro-variables evolution at different temperatures and their interaction.The dislocation density was incorporated into the model to capture the effect of creep deformation on precipitation.Quantitative transmission electron microscopy and experimental data obtained from a previous study were used to calibrate the model.Subsequently,the developed constitutive model was implemented in the finite element(FE)software ABAQUS via the user subroutines for TSCA process simulation and the springback prediction of an integral panel.A TSCA test was performed.The result shows that the maximum radius deviation between the formed plate and the simulation results is less than 0.4 mm,thus validating the effectiveness of the developed constitutive model and FE model.
基金Fund supported this work for Excellent Youth Scholars of China(Grant No.52222708)the National Natural Science Foundation of China(Grant No.51977007)+1 种基金Part of this work is supported by the research project“SPEED”(03XP0585)at RWTH Aachen Universityfunded by the German Federal Ministry of Education and Research(BMBF)。
文摘Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.
基金the financial support from the National Key Research and Development Program of China(No.2023YFB3907001)the National Natural Science Foundation of China(Nos.U2233217,62371029)the UK Engineering and Physical Sciences Research Council(EPSRC),China(Nos.EP/M026981/1,EP/T021063/1 and EP/T024917/)。
文摘Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.
基金supported in part by the National Natural Science Foundation of China under Grants 61973065,U20A20197,61973063.
文摘Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton structure information is not utilized and multi-view pose information is not completely fused.Moreover,existing graph convolutional operations do not consider the specificity of different joints and different views of pose information when processing skeleton graphs,making the correlation weights between nodes in the graph and their neighborhood nodes shared.Existing Graph Convolutional Networks(GCNs)cannot extract global and deeplevel skeleton structure information and view correlations efficiently.To solve these problems,pre-estimated multiview 2D poses are designed as a multi-view skeleton graph to fuse skeleton priors and view correlations explicitly to process occlusion problem,with the skeleton-edge and symmetry-edge representing the structure correlations between adjacent joints in each viewof skeleton graph and the view-edge representing the view correlations between the same joints in different views.To make graph convolution operation mine elaborate and sufficient skeleton structure information and view correlations,different correlation weights are assigned to different categories of neighborhood nodes and further assigned to each node in the graph.Based on the graph convolution operation proposed above,a Residual Graph Convolution(RGC)module is designed as the basic module to be combined with the simplified Hourglass architecture to construct the Hourglass-GCN as our 3D pose estimation network.Hourglass-GCNwith a symmetrical and concise architecture processes three scales ofmulti-viewskeleton graphs to extract local-to-global scale and shallow-to-deep level skeleton features efficiently.Experimental results on common large 3D pose dataset Human3.6M and MPI-INF-3DHP show that Hourglass-GCN outperforms some excellent methods in 3D pose estimation accuracy.
文摘The optimal conditions for two-stage Kalman estimator with random bias of anARMA model is considered in this paper.First,the optimal augmented state Kalman fil-ter and the two-stage Kalman estimator are given.Second,under an algebraic constraint,the equivalence between the two-stage Kalman estimator and the optimal augmented stateKalman filter is proved.Finally,because the given algebraic constraint are restrictive inpractice,the results thus obtained implies that two-stage Kalman estimator is suboptimal.
基金funding from King Saud University through Researchers Supporting Project number(RSP2024R387),King Saud University,Riyadh,Saudi Arabia.
文摘The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.
基金supported by the National Natural Science Foundation of China(Nos.62120106003 and 62173301)。
文摘The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods.
基金supported by National Natural Science Foundation of China(Grant No.62266028,62266027,U21B2027,and U24A20334)Major Science and Technology Programs in Yunnan Province(Grant No.202302AD080003,202402AG050007,and 202303AP140008)+1 种基金Yunnan Province Basic Research Program(Grant No.202301AS070047,202301AT070471,and 202401BC070021)Kunming University of Science and Technology's"Double First-rate"construction joint project(Grant No.202201BE070001-021).
文摘Lexical analysis is a fundamental task in natural language processing,which involves several subtasks,such as word segmentation(WS),part-of-speech(POS)tagging,and named entity recognition(NER).Recent works have shown that taking advantage of relatedness between these subtasks can be beneficial.This paper proposes a unified neural framework to address these subtasks simultaneously.Apart from the sequence tagging paradigm,the proposed method tackles the multitask lexical analysis via two-stage sequence span classification.Firstly,the model detects the word and named entity boundaries by multilabel classification over character spans in a sentence.Then,the authors assign POS labels and entity labels for words and named entities by multi-class classification,respectively.Furthermore,a Gated Task Transformation(GTT)is proposed to encourage the model to share valuable features between tasks.The performance of the proposed model was evaluated on Chinese and Thai public datasets,demonstrating state-of-the-art results.