There is a pressing need for high-performance,high-strength low-alloy structural(HSLA)steels in various engineering fields,such as hydraulic components,engineering machinery,bridges,ships,and pressure vessels.In this ...There is a pressing need for high-performance,high-strength low-alloy structural(HSLA)steels in various engineering fields,such as hydraulic components,engineering machinery,bridges,ships,and pressure vessels.In this study,a gradient dislocation-cell structure is introduced into an HSLA steel through ultrasonic severe surface rolling.The cell size is approximately 614 nm at the topmost surface layer,and increases with increasing the depth.Most of the cell walls have a misorientation ranging from 2°to 15°,indicating they belong to low angle grain boundaries(LAGBs),while some cell walls have a misorientation of less than 2°,corresponding to dense dislocation walls(DDWs).This unique gradient structure offers an exceptional combination of strength and ductility,with a high yield strength of 522.3±1.4 MPa and an accepted elongation of 25.5±1.7%.The morphology and size of the dislocation cells remain remarkably stable after uniaxial tension,demonstrating their efficacy as effective barriers hindering dislocation movement and thus enhancing strength and hardness.This gradient dislocation-cell structure facilitates inhomogeneous plastic deformation during uniaxial tensile loading,resulting in a pronounced accumulation of geometrically necessary dislocations(GNDs).These GNDs play a significant role in conferring favorable mechanical properties by inducing hetero-deformation-induced(HDI)strengthening effects and forest hardening effects.This study presents a promising avenue for achieving the desired mechanical properties in HSLA steel.展开更多
The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode compri...The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode comprising Ce-doped Ni-Fe-Se nanosheets grown on carbon cloth(Ni-Fe-Ce-Se/CC).This electrode was synthesized through a selenylation process,utilizing Ni-Fe-Ce-layered double hydroxide/carbon cloth(Ni-Fe-Ce LDH/CC)as the precursor.Notably,Ni-Fe-Ce-Se/CC electrode demonstrates remarkable performance,requiring a low overpotential of 300 mV to attain a current density of 100 mA·cm^(-2)under harsh alkaline conditions.Furthermore,the electrode exhibits exceptional stability during continuous operation for 100 h.Insight into the underlying mechanisms was gained through a combination of experimental results and density functional theory calculations.Our findings reveal that Ce doping induces crystal structure deformation in Ni-Fe-Se and enhances electron enrichment around Ni atoms.This structural modification optimizes the adsorption energy of oxygen-based intermediates on the Ni-Fe-Se surface.This work offers a valuable strategy for regulating the electron transfer and adsorption capabilities of transition metal selenide electrocatalysts through RE atoms doping,opening new avenues for enhanced electrocatalytic performance.展开更多
On April 3,2024,an M 7.3 earthquake occurred in the offshore area of Hualien County,Taiwan,China.The seismogenic structure at the epicentral location was highly complex,and studying this earthquake is paramount for un...On April 3,2024,an M 7.3 earthquake occurred in the offshore area of Hualien County,Taiwan,China.The seismogenic structure at the epicentral location was highly complex,and studying this earthquake is paramount for understanding regional fault activity.In this study,we employed ascending and descending orbit Sentinel-1 Synthetic Aperture Radar(SAR)data and utilized differential interferometry(InSAR)technique to obtain the co-seismic deformation field of this event.The line-of-sight deformation field revealed that the main deformation caused by this earthquake was predominantly uplift,with maximum uplift values of approximately 38.8 cm and 46.1 cm for the ascending and descending orbits,respectively.By integrating the three-dimensional GNSS coseismic deformation field,we identified the seismogenic fault located in the offshore thrust zone east of Hualien,trending towards the northwest.The fault geometry parameters,obtained through the inversion of an elastic half-space homogeneous model,indicated an optimal fault strike of 196°,a dip angle of 30.9°,and an average strike-slip of 0.4 m and dip-slip of-2.6 m.This suggests that the predominant motion along the seismogenic fault is thrusting.The distribution of post-seismic Coulomb stress changes revealed that aftershocks mainly occurred in stress-loaded regions.However,stress loading was observed along the northern segment of the Longitudinal Valley Fault,with fewer aftershocks.This highlights the importance of closely monitoring the seismic hazard associated with this fault segment.展开更多
The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture t...The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture toughness tests. The results show that the volume fraction of dynamic recrystallization increased with the decrease of Zener-Hollomon (Z) parameter, and the volume fraction of static recrystallization increased with the increasing of Z parameter. The strength and fracture toughness of the alloy after solution and aging treatment first increased and then decreased with the increase of Z parameter. The microstructure map was established on the basis of microstructure evolution during deformation and solution heat treatment. The optimization deformation conditions were acquired under Z parameters of 1.2×10^10-9.1×10^12.展开更多
Porous titanium has been shown to exhibit desirable properties as biomedical materials. In view of the load-bearing situation, the mechanical properties and pore structure deformation behaviour of porous titanium were...Porous titanium has been shown to exhibit desirable properties as biomedical materials. In view of the load-bearing situation, the mechanical properties and pore structure deformation behaviour of porous titanium were studied. Porous titanium with porosities varying from 36%-66% and average pore size of 230 μm was fabricated by powder sintering. Microstructural features were characterized using scanning electron microscopy. Uniaxial compression tests were used to probe the mechanical response in terms of elastic modulus and compressive strength. The mechanical properties of porous titanium were found to be close to the those of human bone, with stiffness values ranging from 1.86 to 14.7 GPa and compressive strength values of 85.16-461.94 MPa. The relationships between mechanical properties and relative densities were established, and the increase in relative density showed significant effects on mechanical properties and deformations of porous titanium. In a lower relative density, the microscopic deformation mechanism of porous titanium was yielding, bending and buckling of cell walls, while the deformation of yielding and bending of cell walls was observed in the porous titanium with higher relative density.展开更多
Hot deformation behavior and microstructure evolution of TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) alloy with equiaxed structure were investigated in the two-phase field at temperatures in the range of 980-800 ℃ and at stra...Hot deformation behavior and microstructure evolution of TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) alloy with equiaxed structure were investigated in the two-phase field at temperatures in the range of 980-800 ℃ and at strain rates of 0.001 s-1,0.01 s-1,0.1 s-1.Effects of thermo-mechanical parameters on both of the stress—strain curves and microstructure evolution were analyzed.Grain boundary characteristics of deformation microstructures were tested by electron backscattered diffraction(EBSD).The results reveal that β-phase dominates the deformation and presents discontinuous dynamic recrystallization at 980 ℃;meanwhile,α-phase coarsens at lower strain rates and dissolves at higher strain rates,and α-phase volume fraction and grain size decrease with increasing strain rate.Super-plastic deformation occurs at 950-900 ℃ and strain rate of 0.001 s-1.And the deformation is dominated by soft β-phase,phase interfaces and grain boundaries.Microstructural mechanism operated at 850 ℃ is continuous dynamic recrystallization of α-phase that dominates the deformation,and β-phase deforms to match the deformation of α-phase.展开更多
The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 3...The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 31 samples of different metamorphic grades (R : 0.7%-3.1%) collected from the Huaibei coalfield. The results indicated that there are different evolution characteristics between the ductile and brittle deformational coals with increasing of metamorphism and deformation. On the one hand, with the increase of metamorphism, the atomic plane spacing (d002) is decreasing at step velocity, the stacking of the BSU layer (Lc) is increasing at first and then decreasing, but the extension of the BSU layer (La) and the ratio of La/Lc are decreasing initially and then increasing. On the other hand, for the brittle deformational coal, d002 is increasing initially and then decreasing, which causes an inversion of the variation of Lc and La under the lower-middle or higher-middle metamorphism grade when the deformational intensity was increasing. In contrast, in the ductile deformational coals, d002 decreased initially and then increased, and the value of L~ decreased with the increase of deformational intensity. But the value of La increased under the lower-middle metamorphism grade and increased at first and then decreased under the higher-middle metamorphism grade. We conclude that the degradation and polycondensation of TDC macromolecular structure can be obviously impacted during the ductile deformational process, because the increase and accumulation of unit dislocation perhaps transforms the stress into strain energy. Meanwhile, the brittle deformation can transform the stress into frictional heat energy, and promote the metamorphism and degradation as well. It can be concluded that deformation is more important than metamorphism to the differential evolution of the ductile and brittle deformational coals.展开更多
High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise a...High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise and earthquake surface wave tomography, and great improvements in data coverage from dense portable array stations deployed in SE Tibet. In this review paper, I first give a brief overview of the tomographic methods from ambient noise and earthquake surface waves, and then summarize the major findings about the lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography as well as by other seismic and geophysical observations. These findings mainly include the 3-D distribution of mechanically weak zones in the mid-lower crust, lateral and vertical variations in radial and azimuthal anisotropy, possible interplay of some fault zones with crustal weak zones, and importance of strike-slip faulting on upper crustal deformation. These results suggest that integration of block extrusion in the more rigid upper-middle crust and channel flow in the more ductile mid-lower crust will be more compatible with the current geophysical observations. Finally I discuss some future perspective researches in SE Tibet, including array-based tomography, joint inversion using multiple seismic data, and integration of geodynamic modeling and seismic observations.展开更多
Through investigating and comparing the mechanical behavior of an as-rolled Mg-3%Al-1%Zn(wt%)alloy before and after annealing treatments,it was revealed that the formation of annealing-tailored bimodal grain structure...Through investigating and comparing the mechanical behavior of an as-rolled Mg-3%Al-1%Zn(wt%)alloy before and after annealing treatments,it was revealed that the formation of annealing-tailored bimodal grain structure ensured the 330℃/4 h samples having a good combination of tensile strength and plasticity.Failure analysis demonstrated that for the as-rolled and 330℃/1 h samples with fine grain structure,their plastic deformation was mainly attributed to basal slips,whereas the deformation mechanism in the bimodal grain-structured samples was dominated by basal slips in fine grains and twinning in coarse grains.For the 330℃/8 h samples with coarse grain structure,high densities of twins were activated.Meanwhile,basal slips occurred in the twinned and un-twinned areas of coarse grains and could pass through twin boundaries.For differently treated samples,cracking preferentially occurred along slip bands,resulting in their transgranular fractures.展开更多
To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were us...To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were used to relocate the earthquake sequence by the tomoDD program, and the focal mechanism solutions and centroid depths of the M_L ≥ 3.5 events in the sequence were determined using the CAP waveform inversion method. Further, the segmental tectonic deformation characteristics of the seismogenic faults were analyzed preliminarily by using strain rosettes and areal strains(As). The results indicate:(1) The relocated M_S 7.0 Jiuzhaigou earthquake sequence displays a narrow ~ 38 km long NNW-SSE-trending zone between the NW-striking Tazang Fault and the nearly NSstriking Minjiang Fault, two branches of the East Kunlun Fault Zone. The spatial distribution of the sequence is narrow and deep for the southern segment, and relatively wide and shallow for the northern segment. The initial rupture depth of the mainshock is 12.5 km, the dominant depth range of the aftershock sequence is between 0 and 10 km with an average depth of 6.7 km. The mainshock epicenter is located in the middle of the aftershock region, showing a bilateral rupture behavior. The centroid depths of 32 M_L ≥ 3.5 events range from 3 to 12 km with a mean of about 7.3 km, consistent with the predominant focal depth of the whole sequence.(2) The geometric structure of the seismogenic fault on the southern section of the aftershock area(south of the mainshock) is relatively simple, with overall strike of ~150° and dip angle ~75°, but the dip angle and dip-orientation exhibit some variation along the segment. The seismogenic structure on the northern segment is more complicated; several faults, including the Minjiang Fault, may be responsible for the aftershock activities. The overall strike of this section is ~159° and dip angle is ~59°, illustrating a certain clockwise rotation and a smaller dip angle than the southern segment. The differences between the two segments demonstrate variation of the geometric structure along the seismogenic faults.(3) The focal mechanism solutions of 32 M_L ≥ 3.5 events in the earthquake sequence have obvious segmental characteristics. Strike-slip earthquakes are dominant on the southern segment, while 50% of events on the northern segment are thrusting and oblique thrusting earthquakes, revealing significant differences in the kinematic features of the seismogenic faults between the two segments.(4) The strain rosettes for the mainshock and the entire sequence of 31 M_L ≥ 3.5 aftershocks correspond to strike-slip type with NWW-SEE compressional white lobes and NNE-SSW extensional black lobes of nearly similar size. The strain rosette and As value of the entire sequence of 22 M_L ≥ 3.5 events on the southern segment are the same as those of the M_S 7.0 mainshock,indicating that the tectonic deformation here is strike-slip. However, the strain rosette of the entire sequence of 10 M_L ≥ 3.5 events on the northern segment show prominent white compressional lobes and small black extensional lobes, and the related As value is up to 0.52,indicating that the tectonic deformation of this segment is oblique thrusting with a certain strike-slip component. Differences between the two segments all reveal distinctly obvious segmental characteristics of the tectonic deformation of the seismogenic faults for the Jiuzhaigou earthquake sequence.展开更多
Detailed three-dimensional structural studies indicate that the Bixiling area, Dabie massif, central China shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze -Sino-Korean contine...Detailed three-dimensional structural studies indicate that the Bixiling area, Dabie massif, central China shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze -Sino-Korean continental collision. New 1 : 10 000 scale structural mapping, combined with detailed petrological analysis in this area, has enabled us to accurately distinguish structures related to the Triassic continental collision from those related to post-collisional deformation in the ultrahigh pressure (UHP) metamorphic unit. The collisional or compressional structures include the massive eclogite with a weak foliation, foliated eclogite or UHP ductile shear zones, as well as upper amphibolite facies shear zones, whereas the post-collisional deformation is characterized by a regionally, flat-lying foliation containing stretching lineations and common reclined folds. The former is present exclusively in the eclogite lenses and their margins, representing orogenic thickening or syn-collisional events, while the latter was best occurred on variable scales under amphibolite facies conditions, showing sub-vertical, extreme shortening and ductile thinning of the metamorphic rock stack. The eclogite facies tectonites that have a marked fabric discordance to the penetrative amphibolite facies extension flow fabric are common. It is emphasized that an extensional tectonic setting following the collision-orogenic thickening stage was, at least partly, responsible for exhumation of the UHP metamorphic rocks in the Dabie massif. A new tectonic evolution model is proposed for the UHP metamorphic belt on the scale of the Dabie massif. The Bixiling area thus provides a window, from which the dynamic processes concerning the formation and exhumation of the UHP rocks can be observed. Regional studies in the Dabie Mountains have confirmed this interpretation.展开更多
Surface mechanical attrition treatment(SMAT) was carried out on hot-rolled AZ31 Mg samples along two orthogonal directions;as a result,two types of gradient structures with different grain sizes and texture components...Surface mechanical attrition treatment(SMAT) was carried out on hot-rolled AZ31 Mg samples along two orthogonal directions;as a result,two types of gradient structures with different grain sizes and texture components in different layers were produced.The tension-compression yield asymmetry(YA) was studied using samples with different thicknesses,in order to elucidate the effect of combinations of variable deformation modes operating in different layers of the two oriented SMAT samples.The 0° oriented SMAT sample containing layers with strong basal texture displayed significant YA,because of either dislocation slip or extension twinning domination during tension or compression.By contrast,the 90° oriented SMAT sample containing layers with coexisting orthogonal texture components had an obviously weakened YA,which was attributed to the multi-deformation modes cooperating during tension or compression,i.e.,extension twinning or detwinning in conjunction with dislocation slips,leading to close yield stresses compared between tension and compression.展开更多
This paper investigated the stress evolution,displacement field,local deformation and its overall distribution,and failure characteristics of the anchorage structure of surrounding rock with different rockbolt spacing...This paper investigated the stress evolution,displacement field,local deformation and its overall distribution,and failure characteristics of the anchorage structure of surrounding rock with different rockbolt spacing through the model experiments.The influences of the pre-tightening force and spacing of rockbolt on the support strength of the anchorage structure of surrounding rock were analyzed by the simulation using FLAC3D numerical software.The support scheme of the excavated roadway was then designed,and the effectiveness of this support scheme was further verified by the displacement measurement of the roadway.The results showed that the maximum displacement between the roof and floor of the west wing track roadway in Kouzidong coal mine,China is about 42 mm,and the maximum displacement between its both sides is about 72 mm,indicating that the support scheme proposed in this study can ensure the stability and safety of the excavated roadway.展开更多
To study the seepage and deformation characteristics of coal at high temperatures,coal samples from six different regions were selected and subjected to computed tomography(CT)scanning studies.In conjunction with ANSY...To study the seepage and deformation characteristics of coal at high temperatures,coal samples from six different regions were selected and subjected to computed tomography(CT)scanning studies.In conjunction with ANSYS software,3 D reconstruction of CT images was used for the establishment of fluidsolid conjugate heat transfer model and coal thermal deformation model based on the microstructures of coal.In addition,the structure of coal was studied in 2 D and 3 D perspectives,followed by the analysis of seepage and deformation characteristics of coal at high temperatures.The results of this study indicated that porosity positively correlated with the fractal dimension,and the connectivity and seepage performances were roughly identical from 2 D and 3 D perspectives.As the porosity increased,the fractal dimension of coal samples became larger and the pore-fracture structures became more complex.As a result,the permeability of coal samples decreased.In the meantime,fluid was fully heated,generating high-temperature water at outlet.However,when the porosity was low,the outlet temperature was very high.The average deformation of coal skeleton with different pore-fracture structures at high temperatures showed a trend of initial increase and subsequent decrease with the increase of porosity and fractal dimension.The maximum deformation of coal skeleton positively correlated with connectivity but negatively correlated with the fractal dimension.展开更多
This study identified soft-sediment deformation structures(SSDS)of seismic origin from lacustrine sediments in the late Quaternary paleo-dammed lake at Tashkorgan,northeastern Pamir.The observed deformation structures...This study identified soft-sediment deformation structures(SSDS)of seismic origin from lacustrine sediments in the late Quaternary paleo-dammed lake at Tashkorgan,northeastern Pamir.The observed deformation structures include sand dykes,liquefied diapir and convolute structures,gravity induced SSDS,and thixotropic pillar and tabular structures.We conducted a preliminary study on the morphology,formation and trigger mechanisms of pillar and tabular structures formed by liquefaction of underlying coarse sand and thixotropy of the upper silty clay.The regional tectonic setting and distribution of lacustrine strata indicate that the most probable trigger for the SSDS in lacustrine sediments was seismic activity,with an approximate earthquake magnitude of M〉6.0;the potential seismogenic fault is the southern part of the Kongur normal fault extensional system.AMS^4C dating results indicate that the SSDS were formed by seismic events occurring between 26050±100 yrBP and 22710±80 yrBP,implying intense fault activity in this region during the late Pleistocene.This study provides new evidence for understanding tectonic activity and regional geodynamics in western China.展开更多
Based on the general [Mo] equivalent criterion and d-electron orbital theory, a new ultrahigh-strength βtitanium alloy with eight major elements(Ti-4.5Al-6.5Mo-2Cr-2.6Nb-2Zr-2Sn-1V, TB17) for industrial applications ...Based on the general [Mo] equivalent criterion and d-electron orbital theory, a new ultrahigh-strength βtitanium alloy with eight major elements(Ti-4.5Al-6.5Mo-2Cr-2.6Nb-2Zr-2Sn-1V, TB17) for industrial applications was developed. An ingot of five tons was successfully melted by thrice vacuum consumable arc melting. The microstructure and elements partitioning of different conditions were investigated systematically. The results suggest that the hierarchical structures of micro-scale first α phase(αf), nano-scale secondary α phase(αs), and ultrafine FCC substructures can be tailored by solution plus aging(STA) heat treatment. The lateral and epitaxial growth of αfphase promotes the HCP-α to FCC substructure transformation with the help of elements partitioning during the aging process. Moreover, the element V, generally regarded as β stabilizer, is found to mainly concentrate in the Al-rich αfphase in this study probably due to its relatively lower content and the strong bonding energy of Al-V. The hierarchical structure has a strong interaction with dislocations, which contributes to achieve a superhigh strength of 1376 MPa.In addition, the plastic strain is partitioned in the multi-scale precipitates(such as the α and FCC substructures) and β matrix, resulting in a considerable plasticity. TEM observation demonstrates that high density entangled dislocations at interfaces and mechanical twins exist in the STA sample after tensile test. It can be deduced that both dislocation slipping and twinning mechanisms are present in this alloy.Therefore, TB17 alloy can serve as an excellent candidate for structural materials on aircrafts that require high strength and lightweight.展开更多
β titanium alloys with bi-modal structure which exhibit improved strength-ductility combination and fatigue property are widely used in aviation and aerospace industry.However,owing to the small size of primary α(α...β titanium alloys with bi-modal structure which exhibit improved strength-ductility combination and fatigue property are widely used in aviation and aerospace industry.However,owing to the small size of primary α(αp) and nano-scaled multi variant distribution of secondary α platelets(αs),investigating the deformation behavior is really a challenging work.In this work,by applying transmission electron microscopy(TEM),the slip behavior in αp and transformed β matrix with different tensile strain was studied.After α/β solution treatment,the initial dislocation slips on {110} plane with <1 1 1> direction in β matrix.During furtherdeformation,(110),(101) and(1 1 2) multi slip is generated which shows a long straight cro s sing configuration.Dislocation cell is exhibited in β matrix at tensile strain above 20 %.Diffe rent from the solid solution treated sample,high density wavy dislocations are generated in transformedβ matrix.High fraction fine as hinders dislocation motion in β matrix effectively which in turn dominates the strength of the alloy.In primary α phase(αp),a core-shell structure is formed during deformation.Both pyramidal a+c slip and prismatic/basal a slip are generated in the shell layer.In core region,plastic deformation is governed by prismatic/basal a slip.Formation of the core-shell structure is the physical origin of the improved ductility.On one hand,the work hardening layer(shell) improves the strength of αp,which could deform compatibly with the hard transformed β matrix.Meanwhile,the center area(core) deforms homogeneously which will sustain plastic strain effectively and increase the ductility.This paper studies the slip behavior and reveals the origin of the improved strength-ductility combination in Bi-modal structure on a microscopic way,which will give theoretical advises for developing the next generation high strength β titanium alloys.展开更多
Intervals of soft-sediment deformation structures are well-exposed in Jurassic lacustrine deposits in the western Qaidamu basin. Through field observation, many soft-sediment deformation structures can be identified, ...Intervals of soft-sediment deformation structures are well-exposed in Jurassic lacustrine deposits in the western Qaidamu basin. Through field observation, many soft-sediment deformation structures can be identified, such as convoluted bedding, liquefied sand veins, load and flame structures, slump structures and sliding-overlapping structures. Based on their genesis, soft-sediment deformation structures can be classified as three types: seismic induced structures, vertical loading structures, and horizontal shear structures. Based on their geometry and genesis analysis, they are seismic-induced structures. According to the characteristics of convoluted bedding structures and liquefied sand veins, it can be inferred that there were earthquakes greater than magnitude 6 in the study area during the middle Jurassic. Furthermore, the study of the slump structures and sliding- overlapping structures indicates that there was a southeastern slope during the middle Jurassic. Since the distance from the study area to the Altyn Mountain and the Altyn fault is no more than 10km, it can be also inferred that the Altyn Mountain existed then and that the AItyn strike-slip fault was active during the middle Jurassic.展开更多
A pure Cu (99.995 wt%) has been subjected to dynamic plastic deformation at cryogenic temperature to a strain of 2.1. Three types of microstructures that are related to dislocation slip, twinning and shear banding h...A pure Cu (99.995 wt%) has been subjected to dynamic plastic deformation at cryogenic temperature to a strain of 2.1. Three types of microstructures that are related to dislocation slip, twinning and shear banding have been quantitatively characterized by transmission electron microscopy (TEM) assisted by convergent beam electron diffraction (CBED) analysis. Microstructures originated from dislocation slip inside or outside the shear bands are characterized by low angle boundaries (〈15°) that are spaced in the nanometer scale, whereas most deformation twins are deviated from the perfect ∑3 coincidence (60°/〈111〉) up to the maximum angle of 9°. The quantitative structural characteristics are compared with those in conventionally deformed Cu at low strain rates, and allowed a quantitative analysis of the flow stress-structural parameter relationship.展开更多
Soft-sediment deformation structures are abundant in the Cambrian Zhushadong and Mantou formations of the Dengfeng area, Henan Province, China. Soft-sediment deformation structures of the Zhushadong Formation consist ...Soft-sediment deformation structures are abundant in the Cambrian Zhushadong and Mantou formations of the Dengfeng area, Henan Province, China. Soft-sediment deformation structures of the Zhushadong Formation consist of fluidized deformation, synsedimentary faults, seismo-folds and plastic deformation; the Mantou Formation is dominated by small-scale horst faults, intruded dikes, fluidized veins, and seismo-cracks. These structures are demonstrated to be earthquake-related by analysis of trigger mechanisms, and may indicate the activity of the Qinling tectonic belt during the early Cambrian. Furthermore, the assemblages of soft-sediment deformation structures altered with time: large-scale, intense deformation in the Zhushadong Formation alters to small-scale, weak deformation in the Mantou Formation. This striking feature may have been caused by changes in hypocentral depth from deep-focus to shallow-focus earthquakes, indicating that the Qinling tectonic belt developed from the subduction of the Shangdan Ocean to the extension of the Erlangping back-arc basin. This study suggests that soft-sediment deformation structures can be used to reveal the activity of a tectonic belt, and, more importantly, changes in deformation assemblages can track the evolution of a tectonic belt.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.U1910212)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘There is a pressing need for high-performance,high-strength low-alloy structural(HSLA)steels in various engineering fields,such as hydraulic components,engineering machinery,bridges,ships,and pressure vessels.In this study,a gradient dislocation-cell structure is introduced into an HSLA steel through ultrasonic severe surface rolling.The cell size is approximately 614 nm at the topmost surface layer,and increases with increasing the depth.Most of the cell walls have a misorientation ranging from 2°to 15°,indicating they belong to low angle grain boundaries(LAGBs),while some cell walls have a misorientation of less than 2°,corresponding to dense dislocation walls(DDWs).This unique gradient structure offers an exceptional combination of strength and ductility,with a high yield strength of 522.3±1.4 MPa and an accepted elongation of 25.5±1.7%.The morphology and size of the dislocation cells remain remarkably stable after uniaxial tension,demonstrating their efficacy as effective barriers hindering dislocation movement and thus enhancing strength and hardness.This gradient dislocation-cell structure facilitates inhomogeneous plastic deformation during uniaxial tensile loading,resulting in a pronounced accumulation of geometrically necessary dislocations(GNDs).These GNDs play a significant role in conferring favorable mechanical properties by inducing hetero-deformation-induced(HDI)strengthening effects and forest hardening effects.This study presents a promising avenue for achieving the desired mechanical properties in HSLA steel.
基金supported by the National Key Technology R&D Program of China(Nos.2021YFB3500801,2022YFB3504302 and 2022YFC3901503)the Natural Science Foundation and Overseas Talent Projects of Jiangxi Province(Nos.0232BAB214025 and 20232BCJ25044)the Double Thousand Plan of Jiangxi Province(No.jxsq2023201002).
文摘The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode comprising Ce-doped Ni-Fe-Se nanosheets grown on carbon cloth(Ni-Fe-Ce-Se/CC).This electrode was synthesized through a selenylation process,utilizing Ni-Fe-Ce-layered double hydroxide/carbon cloth(Ni-Fe-Ce LDH/CC)as the precursor.Notably,Ni-Fe-Ce-Se/CC electrode demonstrates remarkable performance,requiring a low overpotential of 300 mV to attain a current density of 100 mA·cm^(-2)under harsh alkaline conditions.Furthermore,the electrode exhibits exceptional stability during continuous operation for 100 h.Insight into the underlying mechanisms was gained through a combination of experimental results and density functional theory calculations.Our findings reveal that Ce doping induces crystal structure deformation in Ni-Fe-Se and enhances electron enrichment around Ni atoms.This structural modification optimizes the adsorption energy of oxygen-based intermediates on the Ni-Fe-Se surface.This work offers a valuable strategy for regulating the electron transfer and adsorption capabilities of transition metal selenide electrocatalysts through RE atoms doping,opening new avenues for enhanced electrocatalytic performance.
基金supported by Shaanxi Province Natural Science Foundation Research Program[Grant number 2023JC-QN-0296]。
文摘On April 3,2024,an M 7.3 earthquake occurred in the offshore area of Hualien County,Taiwan,China.The seismogenic structure at the epicentral location was highly complex,and studying this earthquake is paramount for understanding regional fault activity.In this study,we employed ascending and descending orbit Sentinel-1 Synthetic Aperture Radar(SAR)data and utilized differential interferometry(InSAR)technique to obtain the co-seismic deformation field of this event.The line-of-sight deformation field revealed that the main deformation caused by this earthquake was predominantly uplift,with maximum uplift values of approximately 38.8 cm and 46.1 cm for the ascending and descending orbits,respectively.By integrating the three-dimensional GNSS coseismic deformation field,we identified the seismogenic fault located in the offshore thrust zone east of Hualien,trending towards the northwest.The fault geometry parameters,obtained through the inversion of an elastic half-space homogeneous model,indicated an optimal fault strike of 196°,a dip angle of 30.9°,and an average strike-slip of 0.4 m and dip-slip of-2.6 m.This suggests that the predominant motion along the seismogenic fault is thrusting.The distribution of post-seismic Coulomb stress changes revealed that aftershocks mainly occurred in stress-loaded regions.However,stress loading was observed along the northern segment of the Longitudinal Valley Fault,with fewer aftershocks.This highlights the importance of closely monitoring the seismic hazard associated with this fault segment.
基金Projects (2010CB731701, 2012CB619502) supported by National Basic Research Program of ChinaProject (51021063) supported by Creative Research Group of National Natural Science Foundation of ChinaProject (CX2012B043) supported by Hunan Provincial Innovation Foundation for Postgraduate
文摘The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture toughness tests. The results show that the volume fraction of dynamic recrystallization increased with the decrease of Zener-Hollomon (Z) parameter, and the volume fraction of static recrystallization increased with the increasing of Z parameter. The strength and fracture toughness of the alloy after solution and aging treatment first increased and then decreased with the increase of Z parameter. The microstructure map was established on the basis of microstructure evolution during deformation and solution heat treatment. The optimization deformation conditions were acquired under Z parameters of 1.2×10^10-9.1×10^12.
基金Project(2012CB619101)supported by the National Basic Research Program of China
文摘Porous titanium has been shown to exhibit desirable properties as biomedical materials. In view of the load-bearing situation, the mechanical properties and pore structure deformation behaviour of porous titanium were studied. Porous titanium with porosities varying from 36%-66% and average pore size of 230 μm was fabricated by powder sintering. Microstructural features were characterized using scanning electron microscopy. Uniaxial compression tests were used to probe the mechanical response in terms of elastic modulus and compressive strength. The mechanical properties of porous titanium were found to be close to the those of human bone, with stiffness values ranging from 1.86 to 14.7 GPa and compressive strength values of 85.16-461.94 MPa. The relationships between mechanical properties and relative densities were established, and the increase in relative density showed significant effects on mechanical properties and deformations of porous titanium. In a lower relative density, the microscopic deformation mechanism of porous titanium was yielding, bending and buckling of cell walls, while the deformation of yielding and bending of cell walls was observed in the porous titanium with higher relative density.
基金Project(2008011045) supported by the Natural Science Foundation of Shanxi Province,China
文摘Hot deformation behavior and microstructure evolution of TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) alloy with equiaxed structure were investigated in the two-phase field at temperatures in the range of 980-800 ℃ and at strain rates of 0.001 s-1,0.01 s-1,0.1 s-1.Effects of thermo-mechanical parameters on both of the stress—strain curves and microstructure evolution were analyzed.Grain boundary characteristics of deformation microstructures were tested by electron backscattered diffraction(EBSD).The results reveal that β-phase dominates the deformation and presents discontinuous dynamic recrystallization at 980 ℃;meanwhile,α-phase coarsens at lower strain rates and dissolves at higher strain rates,and α-phase volume fraction and grain size decrease with increasing strain rate.Super-plastic deformation occurs at 950-900 ℃ and strain rate of 0.001 s-1.And the deformation is dominated by soft β-phase,phase interfaces and grain boundaries.Microstructural mechanism operated at 850 ℃ is continuous dynamic recrystallization of α-phase that dominates the deformation,and β-phase deforms to match the deformation of α-phase.
基金supported by the National Natural Science Foundation of China(Grant Nos.41030422, 40972131,40772135 and 41202120)the National Basic Research Program of China(Grant Nos.2009CB219601 and 2006CB202201)the China Postdoctoral Science Foundation Funded Project(2012M510590)
文摘The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 31 samples of different metamorphic grades (R : 0.7%-3.1%) collected from the Huaibei coalfield. The results indicated that there are different evolution characteristics between the ductile and brittle deformational coals with increasing of metamorphism and deformation. On the one hand, with the increase of metamorphism, the atomic plane spacing (d002) is decreasing at step velocity, the stacking of the BSU layer (Lc) is increasing at first and then decreasing, but the extension of the BSU layer (La) and the ratio of La/Lc are decreasing initially and then increasing. On the other hand, for the brittle deformational coal, d002 is increasing initially and then decreasing, which causes an inversion of the variation of Lc and La under the lower-middle or higher-middle metamorphism grade when the deformational intensity was increasing. In contrast, in the ductile deformational coals, d002 decreased initially and then increased, and the value of L~ decreased with the increase of deformational intensity. But the value of La increased under the lower-middle metamorphism grade and increased at first and then decreased under the higher-middle metamorphism grade. We conclude that the degradation and polycondensation of TDC macromolecular structure can be obviously impacted during the ductile deformational process, because the increase and accumulation of unit dislocation perhaps transforms the stress into strain energy. Meanwhile, the brittle deformation can transform the stress into frictional heat energy, and promote the metamorphism and degradation as well. It can be concluded that deformation is more important than metamorphism to the differential evolution of the ductile and brittle deformational coals.
基金supported by the National Natural Science Foundation of China (No. 41222028)the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams
文摘High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise and earthquake surface wave tomography, and great improvements in data coverage from dense portable array stations deployed in SE Tibet. In this review paper, I first give a brief overview of the tomographic methods from ambient noise and earthquake surface waves, and then summarize the major findings about the lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography as well as by other seismic and geophysical observations. These findings mainly include the 3-D distribution of mechanically weak zones in the mid-lower crust, lateral and vertical variations in radial and azimuthal anisotropy, possible interplay of some fault zones with crustal weak zones, and importance of strike-slip faulting on upper crustal deformation. These results suggest that integration of block extrusion in the more rigid upper-middle crust and channel flow in the more ductile mid-lower crust will be more compatible with the current geophysical observations. Finally I discuss some future perspective researches in SE Tibet, including array-based tomography, joint inversion using multiple seismic data, and integration of geodynamic modeling and seismic observations.
基金supported financially by the Project from the Strategic New Industry Development Special Foundation of Shenzhen (No.JCYJ20170306141749970)National Natural Science Foundation of China Projects under Grant [Nos.51871211 and 51701129]+2 种基金the funds of International Joint Laboratory for Light Alloys,the National Key Research and Development Program of China under Grant [No.2017YFB0702001]Liaoning BaiQianWan Talents Programthe Innovation Fund of Institute of Metal Research (IMR),Chinese Academy of Sciences (CAS)
文摘Through investigating and comparing the mechanical behavior of an as-rolled Mg-3%Al-1%Zn(wt%)alloy before and after annealing treatments,it was revealed that the formation of annealing-tailored bimodal grain structure ensured the 330℃/4 h samples having a good combination of tensile strength and plasticity.Failure analysis demonstrated that for the as-rolled and 330℃/1 h samples with fine grain structure,their plastic deformation was mainly attributed to basal slips,whereas the deformation mechanism in the bimodal grain-structured samples was dominated by basal slips in fine grains and twinning in coarse grains.For the 330℃/8 h samples with coarse grain structure,high densities of twins were activated.Meanwhile,basal slips occurred in the twinned and un-twinned areas of coarse grains and could pass through twin boundaries.For differently treated samples,cracking preferentially occurred along slip bands,resulting in their transgranular fractures.
基金supported by National Science Foundation of China(41574047)National Key R&D Program of China(2018YFC150330501)
文摘To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were used to relocate the earthquake sequence by the tomoDD program, and the focal mechanism solutions and centroid depths of the M_L ≥ 3.5 events in the sequence were determined using the CAP waveform inversion method. Further, the segmental tectonic deformation characteristics of the seismogenic faults were analyzed preliminarily by using strain rosettes and areal strains(As). The results indicate:(1) The relocated M_S 7.0 Jiuzhaigou earthquake sequence displays a narrow ~ 38 km long NNW-SSE-trending zone between the NW-striking Tazang Fault and the nearly NSstriking Minjiang Fault, two branches of the East Kunlun Fault Zone. The spatial distribution of the sequence is narrow and deep for the southern segment, and relatively wide and shallow for the northern segment. The initial rupture depth of the mainshock is 12.5 km, the dominant depth range of the aftershock sequence is between 0 and 10 km with an average depth of 6.7 km. The mainshock epicenter is located in the middle of the aftershock region, showing a bilateral rupture behavior. The centroid depths of 32 M_L ≥ 3.5 events range from 3 to 12 km with a mean of about 7.3 km, consistent with the predominant focal depth of the whole sequence.(2) The geometric structure of the seismogenic fault on the southern section of the aftershock area(south of the mainshock) is relatively simple, with overall strike of ~150° and dip angle ~75°, but the dip angle and dip-orientation exhibit some variation along the segment. The seismogenic structure on the northern segment is more complicated; several faults, including the Minjiang Fault, may be responsible for the aftershock activities. The overall strike of this section is ~159° and dip angle is ~59°, illustrating a certain clockwise rotation and a smaller dip angle than the southern segment. The differences between the two segments demonstrate variation of the geometric structure along the seismogenic faults.(3) The focal mechanism solutions of 32 M_L ≥ 3.5 events in the earthquake sequence have obvious segmental characteristics. Strike-slip earthquakes are dominant on the southern segment, while 50% of events on the northern segment are thrusting and oblique thrusting earthquakes, revealing significant differences in the kinematic features of the seismogenic faults between the two segments.(4) The strain rosettes for the mainshock and the entire sequence of 31 M_L ≥ 3.5 aftershocks correspond to strike-slip type with NWW-SEE compressional white lobes and NNE-SSW extensional black lobes of nearly similar size. The strain rosette and As value of the entire sequence of 22 M_L ≥ 3.5 events on the southern segment are the same as those of the M_S 7.0 mainshock,indicating that the tectonic deformation here is strike-slip. However, the strain rosette of the entire sequence of 10 M_L ≥ 3.5 events on the northern segment show prominent white compressional lobes and small black extensional lobes, and the related As value is up to 0.52,indicating that the tectonic deformation of this segment is oblique thrusting with a certain strike-slip component. Differences between the two segments all reveal distinctly obvious segmental characteristics of the tectonic deformation of the seismogenic faults for the Jiuzhaigou earthquake sequence.
基金This study is supported by the National Natural Science Foundation of China (No. 49972067) the Major State Basic Research Development Program (No. G1999075506).
文摘Detailed three-dimensional structural studies indicate that the Bixiling area, Dabie massif, central China shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze -Sino-Korean continental collision. New 1 : 10 000 scale structural mapping, combined with detailed petrological analysis in this area, has enabled us to accurately distinguish structures related to the Triassic continental collision from those related to post-collisional deformation in the ultrahigh pressure (UHP) metamorphic unit. The collisional or compressional structures include the massive eclogite with a weak foliation, foliated eclogite or UHP ductile shear zones, as well as upper amphibolite facies shear zones, whereas the post-collisional deformation is characterized by a regionally, flat-lying foliation containing stretching lineations and common reclined folds. The former is present exclusively in the eclogite lenses and their margins, representing orogenic thickening or syn-collisional events, while the latter was best occurred on variable scales under amphibolite facies conditions, showing sub-vertical, extreme shortening and ductile thinning of the metamorphic rock stack. The eclogite facies tectonites that have a marked fabric discordance to the penetrative amphibolite facies extension flow fabric are common. It is emphasized that an extensional tectonic setting following the collision-orogenic thickening stage was, at least partly, responsible for exhumation of the UHP metamorphic rocks in the Dabie massif. A new tectonic evolution model is proposed for the UHP metamorphic belt on the scale of the Dabie massif. The Bixiling area thus provides a window, from which the dynamic processes concerning the formation and exhumation of the UHP rocks can be observed. Regional studies in the Dabie Mountains have confirmed this interpretation.
基金financially suppor ted by the Defense Industrial Technology Development Program(No.JCKY2018407C008)the National Natural Science Foundation of China(NSFC)(No.51304061)the NCST Science Fund for Distinguished Young Scholars(No.JQ201702).
文摘Surface mechanical attrition treatment(SMAT) was carried out on hot-rolled AZ31 Mg samples along two orthogonal directions;as a result,two types of gradient structures with different grain sizes and texture components in different layers were produced.The tension-compression yield asymmetry(YA) was studied using samples with different thicknesses,in order to elucidate the effect of combinations of variable deformation modes operating in different layers of the two oriented SMAT samples.The 0° oriented SMAT sample containing layers with strong basal texture displayed significant YA,because of either dislocation slip or extension twinning domination during tension or compression.By contrast,the 90° oriented SMAT sample containing layers with coexisting orthogonal texture components had an obviously weakened YA,which was attributed to the multi-deformation modes cooperating during tension or compression,i.e.,extension twinning or detwinning in conjunction with dislocation slips,leading to close yield stresses compared between tension and compression.
基金supported by the National Natural Science Foundation of China(51734009)National Key Basic Research and Development Program of China(2017YFC0603001).
文摘This paper investigated the stress evolution,displacement field,local deformation and its overall distribution,and failure characteristics of the anchorage structure of surrounding rock with different rockbolt spacing through the model experiments.The influences of the pre-tightening force and spacing of rockbolt on the support strength of the anchorage structure of surrounding rock were analyzed by the simulation using FLAC3D numerical software.The support scheme of the excavated roadway was then designed,and the effectiveness of this support scheme was further verified by the displacement measurement of the roadway.The results showed that the maximum displacement between the roof and floor of the west wing track roadway in Kouzidong coal mine,China is about 42 mm,and the maximum displacement between its both sides is about 72 mm,indicating that the support scheme proposed in this study can ensure the stability and safety of the excavated roadway.
基金supported by the National Natural Science Foundation of China(Project Nos.51934004,51674158,51574158,and 51474106)the Major Program of Shandong Province Natural Science Foundation(ZR2018ZA0602)+2 种基金the Taishan Scholar Talent Team Support Plan for Advantaged&Unique Discipline Areasthe Science and technology support plan for Youth Innovation of colleges and universities in Shandong Province(2019KJH006)the special funds for Taishan scholar project(TS20190935)。
文摘To study the seepage and deformation characteristics of coal at high temperatures,coal samples from six different regions were selected and subjected to computed tomography(CT)scanning studies.In conjunction with ANSYS software,3 D reconstruction of CT images was used for the establishment of fluidsolid conjugate heat transfer model and coal thermal deformation model based on the microstructures of coal.In addition,the structure of coal was studied in 2 D and 3 D perspectives,followed by the analysis of seepage and deformation characteristics of coal at high temperatures.The results of this study indicated that porosity positively correlated with the fractal dimension,and the connectivity and seepage performances were roughly identical from 2 D and 3 D perspectives.As the porosity increased,the fractal dimension of coal samples became larger and the pore-fracture structures became more complex.As a result,the permeability of coal samples decreased.In the meantime,fluid was fully heated,generating high-temperature water at outlet.However,when the porosity was low,the outlet temperature was very high.The average deformation of coal skeleton with different pore-fracture structures at high temperatures showed a trend of initial increase and subsequent decrease with the increase of porosity and fractal dimension.The maximum deformation of coal skeleton positively correlated with connectivity but negatively correlated with the fractal dimension.
基金financially supported by the National Natural Science Foundation of China(41702372)the Open Fund of State Key Laboratory of Earthquake Dynamics(LED2017B03)
文摘This study identified soft-sediment deformation structures(SSDS)of seismic origin from lacustrine sediments in the late Quaternary paleo-dammed lake at Tashkorgan,northeastern Pamir.The observed deformation structures include sand dykes,liquefied diapir and convolute structures,gravity induced SSDS,and thixotropic pillar and tabular structures.We conducted a preliminary study on the morphology,formation and trigger mechanisms of pillar and tabular structures formed by liquefaction of underlying coarse sand and thixotropy of the upper silty clay.The regional tectonic setting and distribution of lacustrine strata indicate that the most probable trigger for the SSDS in lacustrine sediments was seismic activity,with an approximate earthquake magnitude of M〉6.0;the potential seismogenic fault is the southern part of the Kongur normal fault extensional system.AMS^4C dating results indicate that the SSDS were formed by seismic events occurring between 26050±100 yrBP and 22710±80 yrBP,implying intense fault activity in this region during the late Pleistocene.This study provides new evidence for understanding tectonic activity and regional geodynamics in western China.
基金financial support from “13th five-year plan” equipment pre-research project of China (41422010501)。
文摘Based on the general [Mo] equivalent criterion and d-electron orbital theory, a new ultrahigh-strength βtitanium alloy with eight major elements(Ti-4.5Al-6.5Mo-2Cr-2.6Nb-2Zr-2Sn-1V, TB17) for industrial applications was developed. An ingot of five tons was successfully melted by thrice vacuum consumable arc melting. The microstructure and elements partitioning of different conditions were investigated systematically. The results suggest that the hierarchical structures of micro-scale first α phase(αf), nano-scale secondary α phase(αs), and ultrafine FCC substructures can be tailored by solution plus aging(STA) heat treatment. The lateral and epitaxial growth of αfphase promotes the HCP-α to FCC substructure transformation with the help of elements partitioning during the aging process. Moreover, the element V, generally regarded as β stabilizer, is found to mainly concentrate in the Al-rich αfphase in this study probably due to its relatively lower content and the strong bonding energy of Al-V. The hierarchical structure has a strong interaction with dislocations, which contributes to achieve a superhigh strength of 1376 MPa.In addition, the plastic strain is partitioned in the multi-scale precipitates(such as the α and FCC substructures) and β matrix, resulting in a considerable plasticity. TEM observation demonstrates that high density entangled dislocations at interfaces and mechanical twins exist in the STA sample after tensile test. It can be deduced that both dislocation slipping and twinning mechanisms are present in this alloy.Therefore, TB17 alloy can serve as an excellent candidate for structural materials on aircrafts that require high strength and lightweight.
基金supported financially by the National Natural Science Foundation of China (Nos. 51671158 and 51621063)the National Program on Key Basic Research Project (No. 2014CB644003)the Programme of Introducing Talents of Discipline to Universities (No. PB2018008)。
文摘β titanium alloys with bi-modal structure which exhibit improved strength-ductility combination and fatigue property are widely used in aviation and aerospace industry.However,owing to the small size of primary α(αp) and nano-scaled multi variant distribution of secondary α platelets(αs),investigating the deformation behavior is really a challenging work.In this work,by applying transmission electron microscopy(TEM),the slip behavior in αp and transformed β matrix with different tensile strain was studied.After α/β solution treatment,the initial dislocation slips on {110} plane with <1 1 1> direction in β matrix.During furtherdeformation,(110),(101) and(1 1 2) multi slip is generated which shows a long straight cro s sing configuration.Dislocation cell is exhibited in β matrix at tensile strain above 20 %.Diffe rent from the solid solution treated sample,high density wavy dislocations are generated in transformedβ matrix.High fraction fine as hinders dislocation motion in β matrix effectively which in turn dominates the strength of the alloy.In primary α phase(αp),a core-shell structure is formed during deformation.Both pyramidal a+c slip and prismatic/basal a slip are generated in the shell layer.In core region,plastic deformation is governed by prismatic/basal a slip.Formation of the core-shell structure is the physical origin of the improved ductility.On one hand,the work hardening layer(shell) improves the strength of αp,which could deform compatibly with the hard transformed β matrix.Meanwhile,the center area(core) deforms homogeneously which will sustain plastic strain effectively and increase the ductility.This paper studies the slip behavior and reveals the origin of the improved strength-ductility combination in Bi-modal structure on a microscopic way,which will give theoretical advises for developing the next generation high strength β titanium alloys.
基金The National Natural Science Fund(No:41172093)the research fund(No:2003042500820060425509)for the doctoral program of higher education from Ministry of Education for their financial support
文摘Intervals of soft-sediment deformation structures are well-exposed in Jurassic lacustrine deposits in the western Qaidamu basin. Through field observation, many soft-sediment deformation structures can be identified, such as convoluted bedding, liquefied sand veins, load and flame structures, slump structures and sliding-overlapping structures. Based on their genesis, soft-sediment deformation structures can be classified as three types: seismic induced structures, vertical loading structures, and horizontal shear structures. Based on their geometry and genesis analysis, they are seismic-induced structures. According to the characteristics of convoluted bedding structures and liquefied sand veins, it can be inferred that there were earthquakes greater than magnitude 6 in the study area during the middle Jurassic. Furthermore, the study of the slump structures and sliding- overlapping structures indicates that there was a southeastern slope during the middle Jurassic. Since the distance from the study area to the Altyn Mountain and the Altyn fault is no more than 10km, it can be also inferred that the Altyn Mountain existed then and that the AItyn strike-slip fault was active during the middle Jurassic.
基金the Danish National Research Foundation and the National Natural Science Foundation of China (Grant No. 50911130230)for the Danish-Chinese center for Nanometals, within which this study was performedsponsored by MOST international S&T project(2010DFB54010), SRF for ROCS, SEM, and the Young Merit Scholar of Institute of Metal Research, Chinese Academy of Science, China
文摘A pure Cu (99.995 wt%) has been subjected to dynamic plastic deformation at cryogenic temperature to a strain of 2.1. Three types of microstructures that are related to dislocation slip, twinning and shear banding have been quantitatively characterized by transmission electron microscopy (TEM) assisted by convergent beam electron diffraction (CBED) analysis. Microstructures originated from dislocation slip inside or outside the shear bands are characterized by low angle boundaries (〈15°) that are spaced in the nanometer scale, whereas most deformation twins are deviated from the perfect ∑3 coincidence (60°/〈111〉) up to the maximum angle of 9°. The quantitative structural characteristics are compared with those in conventionally deformed Cu at low strain rates, and allowed a quantitative analysis of the flow stress-structural parameter relationship.
基金granted by the doctor foundation of Henan Polytechnic University(NO:B2013-076)the National Nature Science Foundation of China(NO:4147208341440016)
文摘Soft-sediment deformation structures are abundant in the Cambrian Zhushadong and Mantou formations of the Dengfeng area, Henan Province, China. Soft-sediment deformation structures of the Zhushadong Formation consist of fluidized deformation, synsedimentary faults, seismo-folds and plastic deformation; the Mantou Formation is dominated by small-scale horst faults, intruded dikes, fluidized veins, and seismo-cracks. These structures are demonstrated to be earthquake-related by analysis of trigger mechanisms, and may indicate the activity of the Qinling tectonic belt during the early Cambrian. Furthermore, the assemblages of soft-sediment deformation structures altered with time: large-scale, intense deformation in the Zhushadong Formation alters to small-scale, weak deformation in the Mantou Formation. This striking feature may have been caused by changes in hypocentral depth from deep-focus to shallow-focus earthquakes, indicating that the Qinling tectonic belt developed from the subduction of the Shangdan Ocean to the extension of the Erlangping back-arc basin. This study suggests that soft-sediment deformation structures can be used to reveal the activity of a tectonic belt, and, more importantly, changes in deformation assemblages can track the evolution of a tectonic belt.