The machining process remains relevant for manufacturing high-quality and high-precision parts,which can be found in industries such as aerospace and aeronautical,with many produced by turning,drilling,and milling pro...The machining process remains relevant for manufacturing high-quality and high-precision parts,which can be found in industries such as aerospace and aeronautical,with many produced by turning,drilling,and milling processes.Monitoring and analyzing tool wear during these processes is crucial to assess the tool’s life and optimize the tool’s performance under study;as such,standards detail procedures to measure and assess tool wear for various tools.Measuring wear in machining tools can be time-consuming,as the process is usually manual,requiring human interaction and judgment.In the present work,an automated offline flank wear measurement algorithm was developed in Python.The algorithm measures the flank wear of coated end-mills and slot drills from Scanning Electron Microscopy(SEM)images,according to the ISO 8688 standard,following the same wear measurement procedure.SEM images acquired with different magnifications and tools with varying machining parameters were analyzed using the developed algorithm.The flank wear measurements were then compared to the manually obtained,achieving relative errors for the most common magnifications of around 2.5%.Higher magnifications were also tested,yielding a maximum relative error of 13.4%.The algorithm can measure batches of images quickly on an ordinary personal computer,analyzing and measuring a 10-image batch in around 30 s,a process that would require around 30 min when performed manually by a skilled operator.Therefore,it can be a reliable alternative to measuring flank wear on many tools from SEM images,with the possibility of being adjusted for other wear measurements on different kinds of tools and different image types,for example,on images obtained by optical microscopy.展开更多
The presence of residual stresses in materials or engineering structures can significantly influence their mechanical per-formance.Accurate measurement of residual stresses is of great importance to ensure their in-se...The presence of residual stresses in materials or engineering structures can significantly influence their mechanical per-formance.Accurate measurement of residual stresses is of great importance to ensure their in-service reliability.Although numerous instrumented indentation methods have been proposed to evaluate residual stresses,the majority of them require a stress-free reference sample as a comparison benchmark,thereby limiting their applicability in scenarios where obtaining stress-free reference samples is challenging.In this work,through a number of finite element simulations,it was found that the loading exponent of the loading load-depth curve and the recovered depth during unloading are insensitive to residual stresses.The loading curve of the stress-free specimen was virtually reconstructed using such stress-insensitive parameters extracted from the load-depth curves of the stressed state,thus eliminating the requirement for stress-free reference samples.The residual stress was then correlated with the fractional change in loading work between stressed and stress-free loading curves through dimensional analysis and finite element simulations.Based on this correlation,an instrumented sharp indentation method for measuring equibiaxial residual stress without requiring a stress-free specimen was established.Both numerical and experimental verifications were carried out to demonstrate the accuracy and reliability of the newly proposed method.The maximum relative error and absolute error in measured residual stresses are typically within±20%and±20 MPa,respectively.展开更多
Traditional automated guided vehicle(AGV)primarily relies on scheduling systems to manage warehouse locations and execute picking or placing tasks on fixedheight pallets.However,these conventional systems are illsuite...Traditional automated guided vehicle(AGV)primarily relies on scheduling systems to manage warehouse locations and execute picking or placing tasks on fixedheight pallets.However,these conventional systems are illsuited for scenarios involving variable heights,such as vehicle loading and unloading or the complex stacking of soft packages.To address the challenges of AGV endeffector operations in nonfixed height scenarios,this paper proposes an innovative solution leveraging lowcost depth camera sensors.By capturing image and depth data,and integrating deep learning,image processing,and spatial attitude calculation techniques,the method accurately determines the position of the endeffector center point relative to the upper plane of the fork.The approach effectively resolves a key issue in AGV operations within intelligent logistics scenarios that lack fixed heights.The proposed algorithm is deployed on a domestic embedded,lowcost ARM chip controller,and extensive experiments are conducted on a real AGV equipped with multiple stacked vehicles and nonstandard vehicles.The experimental results demonstrate that for diverse vehicles with different heights,the measurement error can be maintained within±10 mm,satisfying the requirements for highprecision measurement.The height measurement method developed in the paper not only enhances the AGV’s adaptability in nonfixed height scenarios but also significantly broadens its application potential across various industries.展开更多
Single-cell biomechanics and electrophysiology measuring tools have transformed biological research over the last few decades,which enabling a comprehensive and nuanced understanding of cellular behavior and function....Single-cell biomechanics and electrophysiology measuring tools have transformed biological research over the last few decades,which enabling a comprehensive and nuanced understanding of cellular behavior and function.Despite their high-quality information content,these single-cell measuring techniques suffer from laborious manual processing by highly skilled workers and extremely low throughput(tens of cells per day).Recently,numerous researchers have automated the measurement of cell mechanical and electrical signals through robotic localization and control processes.While these efforts have demonstrated promising progress,critical challenges persist,including human dependency,learning complexity,in-situ measurement,and multidimensional signal acquisition.To identify key limitations and highlight emerging opportunities for innovation,in this review,we comprehensively summarize the key steps of robotic technologies in single-cell biomechanics and electrophysiology.We also discussed the prospects and challenges of robotics and automation in biological research.By bridging gaps between engineering,biology,and data science,this work aims to stimulate interdisciplinary research and accelerate the translation of robotic single-cell technologies into practical applications in the life sciences and medical fields.展开更多
Rapid technological advancements drive miniaturization and high energy density in devices,thereby increasing nanoscale thermal management demands and urging development of higher spatial resolution technologies for th...Rapid technological advancements drive miniaturization and high energy density in devices,thereby increasing nanoscale thermal management demands and urging development of higher spatial resolution technologies for thermal imaging and transport research.Here,we introduce an approach to measure nanoscale thermal resistance using in situ inelastic scanning transmission electron microscopy.By constructing unidirectional heating flux with controlled temperature gradients and analyzing electron energy-loss/gain signals under optimized acquisition conditions,nanometer-resolution in mapping phonon apparent temperature is achieved.Thus,interfacial thermal resistance is determined by calculating the ratio of interfacial temperature difference to bulk temperature gradient.This methodology enables direct measurement of thermal transport properties for atomic-scale structural features(e.g.,defects and heterointerfaces),resolving critical structure-performance relationships,providing a useful tool for investigating thermal phenomena at the(sub-)nanoscale.展开更多
A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into correspon...A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.展开更多
Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain a...Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain and cloud measuring radar are studied systematically.Radar block diagram and main parameters are presented.Antenna subsystem scheme is analyzed and antenna parameters are proposed.Central electronic device subsystem scheme is given and data rate of spaceborne radar is calculated.This paper is a meaningful try for carrying out spaceborne rain and cloud measuring radar design,acting as a reference to Chinese spaceborne rain and cloud measuring radar design and production in future.展开更多
The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at...The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at the probing position from dynamic rotational errors is presented.It is pointed out that the finite element method might be used for modeling dynamic errors.However,dynamic errors are difficult to be modeled so a combined practical and theoretical approach is needed.In addition,the dynamic errors are measured with inductive position sensors.展开更多
By using principal component analysis,this paper had modified and put forward a theoretical model of evaluation on tourist satisfaction degree with tourist perception quality and tourist satisfaction degree as structu...By using principal component analysis,this paper had modified and put forward a theoretical model of evaluation on tourist satisfaction degree with tourist perception quality and tourist satisfaction degree as structure variables and with thirty indexes like image of tourist area,tourists' expectation,infrastructure in tourist area,landscape features and ticket price as observed variables,based on random questionnaire survey of tourists of Zhenyuan ancient city in Guizhou Province and the existing evaluation models of tourist satisfaction degree at home and abroad.The survey result showed that tourist satisfaction degree was not high,that tourists were dissatisfied with observing facilities,transportation,accommodation and landscape features,and that the attraction power of tourist area was weak.The comprehensive tourist satisfaction degree of Zhenyuan ancient city was 77.653.Therefore,the government should enhance reconstruction of infrastructure and construction of landscape features,and improve tourist service quality level,so as to realize sustainable development of tourist economy in Zhenyuan ancient city.展开更多
A CCD position detecting system measuring the displacement and deformation of structure is presented. The measure method takes advantage of the position detecting technique based on digital image processing. A bright ...A CCD position detecting system measuring the displacement and deformation of structure is presented. The measure method takes advantage of the position detecting technique based on digital image processing. A bright spot is pegged on the object to be measured and imaged to the target of CCD camera through a telescopic lens. The CCD target converts the optical signal to equivalent electric signal. The video frequency signal is digitized to an array of 512×512 pixels by the analog to digital converter (ADC), then transmitted to the computer. The computer controls the data acquisition, conducts image processing and detects the location of the target spot. Comparing the current position with the original position of the spot, the displacement of object is obtained. With the aid of analysis software, the system can achieve the resolution of 0 01 mm in the 6 m distance from the object to the point of observation. To meet the need of practice, the measuring distance can be extended to 100 m or even farther.展开更多
Comparing with the coordinates measuring machine (CMM),the theodolite industrial measuring system (TIMS) can be easily moved and it can measure large sized industrial targets contactlessly.But up to now the precision...Comparing with the coordinates measuring machine (CMM),the theodolite industrial measuring system (TIMS) can be easily moved and it can measure large sized industrial targets contactlessly.But up to now the precision of the TIMS has been considered so low that the TIMS isnt applied to some precise measurements.The error in self locating TIMS is a main factor which affects the precision of the TIMS.A new model of the TIMS is given out in this paper,and it can eliminate the error in self locating the TIMS.The new model is not only investigated and analyzed theoretically but also verified by the real measured data.展开更多
The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable...The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable calibration parameters. To compensate for the deficiency of one measurement model, the multiple measurement models are built by the Denavit-Hartenberg's notation, the homemade standard rod components are used as a calibration tool and the Levenberg-Marquardt calibration algorithm is applied to solve the structural parameters in the measurement models. During the tests of multiple measurement models, the sample areas are selected in two situations. It is found that the measurement errors' sigma value(0.083 4 ram) dealt with one measurement model is nearly two times larger than that of the multiple measurement models(0.043 1 ram) in the same sample area. While in the different sample area, the measurement errors' sigma value(0.054 0 ram) dealt with the multiple measurement models is about 40% of one measurement model(0.137 3 mm). The preliminary results suggest that the measurement accuracy of AACMM dealt with multiple measurement models is superior to the accuracy of the existing machine with one measurement model. This paper proposes the multiple measurement models to improve the measurement accuracy of AACMM without increasing any hardware cost.展开更多
A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrum...A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrument, consists of different types of intelligent virtualinstrument (IVI) through individual components together as building blocks and can be displayeddirectly on the computer screen. This is a new concept of measuring instrument, and also animportant breakthrough after virtual instrument (VI). Virtual control makes instrument resourcesobtain further exploitation. It brings about a fundamental change to the design and manufacturingmode. The instrument therefore, can not only be produced directly inside a PC, but the product isinvolved in the 'green product' system. So far, all the present digital instruments will grow to bereplaced by intelligent control with green characteristics.展开更多
Concerning about the rapid urban growth in recent China, this study takes Beijing as a case and puts forward that urban sprawl can be measured from spatial configuration, urban growth efficiency and external impacts, ...Concerning about the rapid urban growth in recent China, this study takes Beijing as a case and puts forward that urban sprawl can be measured from spatial configuration, urban growth efficiency and external impacts, and then develops a geo-spatial indices system for measuring sprawl, a total of 13 indicators. In order to calculate these indices, different sources data are selected, including land use maps, former land use planning, land price and floor-area-ratio samples, digitized map of the highways and city centers, population and GDP statistical data, etc. Various GIS spatial analysis methods are used to spatialize these indices into 100mx100m cells. Besides, an integrated urban sprawl index is calculated by weight sum of these 13 indices. The application result indicates that geo-spatial indices system can capture most of the typical features and interior differentia of urban sprawl. Construction land in Beijing has kept fast growing with large amount, low efficiency and disordered spatial configuration, indicating a typical sprawling tendency. The following specific sprawl features are identified by each indicator: (1) typical spatial configuration of sprawling: obvious fragmentation and irregularity of landscape due to unsuccessful enforcement of land use planning, unadvisable pattern of typical discontinuous development, strip development and leapfrog development; (2) low efficiency of sprawl: low development density, low population density and economic output in newly developed area; and (3) negative impacts on agriculture, environment and city life. According to the integrated sprawl index, the sprawling amount in the northern part is larger than that in the southern, but the sprawling extent is in converse case; most sprawling area include the marginal area of the near suburbs and the area between highways, etc. Four sprawling patterns are identified: randomly expansion at urban fringe, strip development along or between highways, scattered development of industrial land, leapfrog development of urban residence and industrial area.展开更多
Some unavoidable factors in the process of cold strip shape measurement interfere with the shape meter, so the shape measuring results cannot reflect the true shape of the strip and the measuring precision is low. The...Some unavoidable factors in the process of cold strip shape measurement interfere with the shape meter, so the shape measuring results cannot reflect the true shape of the strip and the measuring precision is low. The influ- ences of the measuring error of the strip edges, the transverse temperature difference of the strip, the deflection of shape detection roller, and the shape of the strip coil on the shape measuring results were analyzed in detail, and the corresponding compensation models were established. The simulation calculation and analysis were carried out on a cold strip mill, and a number of disciplinarian cognitions were obtained.展开更多
A method for super high resolution comparison measurement is proposed in this paper with a comparison between the frequency standards of different nominal frequencies, which is based on phase coincidence detection of ...A method for super high resolution comparison measurement is proposed in this paper with a comparison between the frequency standards of different nominal frequencies, which is based on phase coincidence detection of the two compared signals. It utilizes the regular phase shift characteristics between the signals. The resolution of the measurement approach can reach 10^-13/s at 5 MHz, and the self-calibration resolution can achieve 10^-14/s in the comparison between 10 MHz and 100 MHz, or even can reach 10^-15/s in the comparison between 10 MHz and 190 MHz. This method implies significant progress in the development of the high precision frequency standard comparison technology.展开更多
'N-2-1' principle is widely recognized in the fixture design for deformablesheet metal workpieces, where N, the locators on primary datum, is the key to sheet metal fixturedesign. However, little research is d...'N-2-1' principle is widely recognized in the fixture design for deformablesheet metal workpieces, where N, the locators on primary datum, is the key to sheet metal fixturedesign. However, little research is done on how to determine the positions and the number of Nlocators. In practice, the N locators are frequently designed from experience, which is oftenunsatisfactory for achieving the precision requirement in fixture design. A new method to lay outthe N locators for measuring fixture of deformable sheet metal workpiece is presented, given thefixed number of A'. Finite-element method is used to model and analysis the deformation of differentlocator layouts. A knowledge based genetic algorithm (KBGA) is applied to identify the optimumlocator layout for measuring fixture design. An example of a door outer is used to verify theoptimization approach.展开更多
AIM:To evaluate the reliability of an instrument that measures disability arising from episodic abdominal pain in patients with suspected sphincter of Oddi dysfunction(SOD).METHODS:Although several treatments have bee...AIM:To evaluate the reliability of an instrument that measures disability arising from episodic abdominal pain in patients with suspected sphincter of Oddi dysfunction(SOD).METHODS:Although several treatments have been utilized to reduce pain and associated disability,measurement tools have not been developed to reliably track outcomes.Two pilot studies were conducted to assess test-retest reliability of a newly developed instrument,the recurrent abdominal pain intensity and disability(RAPID) instrument.The RAPID score is a 90-d summation of days where productivity for various daily activities is reduced as a result of abdominal pain episodes,and is modeled after the migraine disability assessment instrument used to measure headache-related disability.RAPID was administered by telephone on 2 consecutive occasions in 2 consenting populations with suspected SOD:a pre-sphincterotomy population(Pilot Ⅰ,n = 55) and a post-sphincterotomy population(Pilot Ⅱ,n = 70).RESULTS:The average RAPID scores for Pilots Ⅰ and Ⅱ were:82 d(median:81.5 d,SD:64 d) and 48 d(median:0 d,SD:91 d),respectively.The concordance between the 2 assessments for both populations was very good:0.81 for the pre-sphincterotomy population and 0.95 for the post-sphincterotomy population.CONCLUSION:The described pilot studies suggest that RAPID is a reliable instrument for measuring disability resulting from abdominal pain in suspected SOD patients.展开更多
文摘The machining process remains relevant for manufacturing high-quality and high-precision parts,which can be found in industries such as aerospace and aeronautical,with many produced by turning,drilling,and milling processes.Monitoring and analyzing tool wear during these processes is crucial to assess the tool’s life and optimize the tool’s performance under study;as such,standards detail procedures to measure and assess tool wear for various tools.Measuring wear in machining tools can be time-consuming,as the process is usually manual,requiring human interaction and judgment.In the present work,an automated offline flank wear measurement algorithm was developed in Python.The algorithm measures the flank wear of coated end-mills and slot drills from Scanning Electron Microscopy(SEM)images,according to the ISO 8688 standard,following the same wear measurement procedure.SEM images acquired with different magnifications and tools with varying machining parameters were analyzed using the developed algorithm.The flank wear measurements were then compared to the manually obtained,achieving relative errors for the most common magnifications of around 2.5%.Higher magnifications were also tested,yielding a maximum relative error of 13.4%.The algorithm can measure batches of images quickly on an ordinary personal computer,analyzing and measuring a 10-image batch in around 30 s,a process that would require around 30 min when performed manually by a skilled operator.Therefore,it can be a reliable alternative to measuring flank wear on many tools from SEM images,with the possibility of being adjusted for other wear measurements on different kinds of tools and different image types,for example,on images obtained by optical microscopy.
基金support from the National Natural Science Foundation of China(Grant Nos.12172332,11727803 and 12072009)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ23A020007)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.RF-C2022003).
文摘The presence of residual stresses in materials or engineering structures can significantly influence their mechanical per-formance.Accurate measurement of residual stresses is of great importance to ensure their in-service reliability.Although numerous instrumented indentation methods have been proposed to evaluate residual stresses,the majority of them require a stress-free reference sample as a comparison benchmark,thereby limiting their applicability in scenarios where obtaining stress-free reference samples is challenging.In this work,through a number of finite element simulations,it was found that the loading exponent of the loading load-depth curve and the recovered depth during unloading are insensitive to residual stresses.The loading curve of the stress-free specimen was virtually reconstructed using such stress-insensitive parameters extracted from the load-depth curves of the stressed state,thus eliminating the requirement for stress-free reference samples.The residual stress was then correlated with the fractional change in loading work between stressed and stress-free loading curves through dimensional analysis and finite element simulations.Based on this correlation,an instrumented sharp indentation method for measuring equibiaxial residual stress without requiring a stress-free specimen was established.Both numerical and experimental verifications were carried out to demonstrate the accuracy and reliability of the newly proposed method.The maximum relative error and absolute error in measured residual stresses are typically within±20%and±20 MPa,respectively.
基金Supported by the Key Research and Development Program of Anhui Province(No.201904a05020035)the Postdoctoral Research Initiative of Anhui Province(No.2024B804)the Hefei City Key Technology Research and Development‘Ranking’(No.2023SGJ017).
文摘Traditional automated guided vehicle(AGV)primarily relies on scheduling systems to manage warehouse locations and execute picking or placing tasks on fixedheight pallets.However,these conventional systems are illsuited for scenarios involving variable heights,such as vehicle loading and unloading or the complex stacking of soft packages.To address the challenges of AGV endeffector operations in nonfixed height scenarios,this paper proposes an innovative solution leveraging lowcost depth camera sensors.By capturing image and depth data,and integrating deep learning,image processing,and spatial attitude calculation techniques,the method accurately determines the position of the endeffector center point relative to the upper plane of the fork.The approach effectively resolves a key issue in AGV operations within intelligent logistics scenarios that lack fixed heights.The proposed algorithm is deployed on a domestic embedded,lowcost ARM chip controller,and extensive experiments are conducted on a real AGV equipped with multiple stacked vehicles and nonstandard vehicles.The experimental results demonstrate that for diverse vehicles with different heights,the measurement error can be maintained within±10 mm,satisfying the requirements for highprecision measurement.The height measurement method developed in the paper not only enhances the AGV’s adaptability in nonfixed height scenarios but also significantly broadens its application potential across various industries.
基金the National Natural Science Foundation of China[62525301,62127811,62433019]the New Cornerstone Science Foundation through the XPLORER PRIZEthe financial support by the China Postdoctoral Science Foundation[GZB20240797].
文摘Single-cell biomechanics and electrophysiology measuring tools have transformed biological research over the last few decades,which enabling a comprehensive and nuanced understanding of cellular behavior and function.Despite their high-quality information content,these single-cell measuring techniques suffer from laborious manual processing by highly skilled workers and extremely low throughput(tens of cells per day).Recently,numerous researchers have automated the measurement of cell mechanical and electrical signals through robotic localization and control processes.While these efforts have demonstrated promising progress,critical challenges persist,including human dependency,learning complexity,in-situ measurement,and multidimensional signal acquisition.To identify key limitations and highlight emerging opportunities for innovation,in this review,we comprehensively summarize the key steps of robotic technologies in single-cell biomechanics and electrophysiology.We also discussed the prospects and challenges of robotics and automation in biological research.By bridging gaps between engineering,biology,and data science,this work aims to stimulate interdisciplinary research and accelerate the translation of robotic single-cell technologies into practical applications in the life sciences and medical fields.
基金supported by the National Natural Science Foundation of China(Grant No.52125307)the National Key R&D Program of China(Grant No.2021YFB3501500)the support from the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘Rapid technological advancements drive miniaturization and high energy density in devices,thereby increasing nanoscale thermal management demands and urging development of higher spatial resolution technologies for thermal imaging and transport research.Here,we introduce an approach to measure nanoscale thermal resistance using in situ inelastic scanning transmission electron microscopy.By constructing unidirectional heating flux with controlled temperature gradients and analyzing electron energy-loss/gain signals under optimized acquisition conditions,nanometer-resolution in mapping phonon apparent temperature is achieved.Thus,interfacial thermal resistance is determined by calculating the ratio of interfacial temperature difference to bulk temperature gradient.This methodology enables direct measurement of thermal transport properties for atomic-scale structural features(e.g.,defects and heterointerfaces),resolving critical structure-performance relationships,providing a useful tool for investigating thermal phenomena at the(sub-)nanoscale.
文摘A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.
基金Supported by Horizontal Program of Space Long March Rocket Technology Co. Ltd (500036)
文摘Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain and cloud measuring radar are studied systematically.Radar block diagram and main parameters are presented.Antenna subsystem scheme is analyzed and antenna parameters are proposed.Central electronic device subsystem scheme is given and data rate of spaceborne radar is calculated.This paper is a meaningful try for carrying out spaceborne rain and cloud measuring radar design,acting as a reference to Chinese spaceborne rain and cloud measuring radar design and production in future.
文摘The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at the probing position from dynamic rotational errors is presented.It is pointed out that the finite element method might be used for modeling dynamic errors.However,dynamic errors are difficult to be modeled so a combined practical and theoretical approach is needed.In addition,the dynamic errors are measured with inductive position sensors.
基金Supported by Planning Project of Kaili Institute(Z1009)and Youth Foundation of Special Scientific Research Project of Key Discipline of Tourist Management of Kaili Institute(lgz200904)~~
文摘By using principal component analysis,this paper had modified and put forward a theoretical model of evaluation on tourist satisfaction degree with tourist perception quality and tourist satisfaction degree as structure variables and with thirty indexes like image of tourist area,tourists' expectation,infrastructure in tourist area,landscape features and ticket price as observed variables,based on random questionnaire survey of tourists of Zhenyuan ancient city in Guizhou Province and the existing evaluation models of tourist satisfaction degree at home and abroad.The survey result showed that tourist satisfaction degree was not high,that tourists were dissatisfied with observing facilities,transportation,accommodation and landscape features,and that the attraction power of tourist area was weak.The comprehensive tourist satisfaction degree of Zhenyuan ancient city was 77.653.Therefore,the government should enhance reconstruction of infrastructure and construction of landscape features,and improve tourist service quality level,so as to realize sustainable development of tourist economy in Zhenyuan ancient city.
文摘A CCD position detecting system measuring the displacement and deformation of structure is presented. The measure method takes advantage of the position detecting technique based on digital image processing. A bright spot is pegged on the object to be measured and imaged to the target of CCD camera through a telescopic lens. The CCD target converts the optical signal to equivalent electric signal. The video frequency signal is digitized to an array of 512×512 pixels by the analog to digital converter (ADC), then transmitted to the computer. The computer controls the data acquisition, conducts image processing and detects the location of the target spot. Comparing the current position with the original position of the spot, the displacement of object is obtained. With the aid of analysis software, the system can achieve the resolution of 0 01 mm in the 6 m distance from the object to the point of observation. To meet the need of practice, the measuring distance can be extended to 100 m or even farther.
文摘Comparing with the coordinates measuring machine (CMM),the theodolite industrial measuring system (TIMS) can be easily moved and it can measure large sized industrial targets contactlessly.But up to now the precision of the TIMS has been considered so low that the TIMS isnt applied to some precise measurements.The error in self locating TIMS is a main factor which affects the precision of the TIMS.A new model of the TIMS is given out in this paper,and it can eliminate the error in self locating the TIMS.The new model is not only investigated and analyzed theoretically but also verified by the real measured data.
基金Supported by National Natural Science Foundation of China(Grant No.51265017)Jiangxi Provincial Science and Technology Planning Project,China(Grant No.GJJ12468)Science and Technology Planning Project of Ji’an City,China(Grant No.20131828)
文摘The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable calibration parameters. To compensate for the deficiency of one measurement model, the multiple measurement models are built by the Denavit-Hartenberg's notation, the homemade standard rod components are used as a calibration tool and the Levenberg-Marquardt calibration algorithm is applied to solve the structural parameters in the measurement models. During the tests of multiple measurement models, the sample areas are selected in two situations. It is found that the measurement errors' sigma value(0.083 4 ram) dealt with one measurement model is nearly two times larger than that of the multiple measurement models(0.043 1 ram) in the same sample area. While in the different sample area, the measurement errors' sigma value(0.054 0 ram) dealt with the multiple measurement models is about 40% of one measurement model(0.137 3 mm). The preliminary results suggest that the measurement accuracy of AACMM dealt with multiple measurement models is superior to the accuracy of the existing machine with one measurement model. This paper proposes the multiple measurement models to improve the measurement accuracy of AACMM without increasing any hardware cost.
基金This project is supported by National Natural Science Foundation of China(No.50135050).
文摘A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrument, consists of different types of intelligent virtualinstrument (IVI) through individual components together as building blocks and can be displayeddirectly on the computer screen. This is a new concept of measuring instrument, and also animportant breakthrough after virtual instrument (VI). Virtual control makes instrument resourcesobtain further exploitation. It brings about a fundamental change to the design and manufacturingmode. The instrument therefore, can not only be produced directly inside a PC, but the product isinvolved in the 'green product' system. So far, all the present digital instruments will grow to bereplaced by intelligent control with green characteristics.
基金National Natural Science Foundation of China, No.40571056 Sustentation Fund on Doctoral Thesis from Beijing Science and Technology Committee, No.ZZ0608
文摘Concerning about the rapid urban growth in recent China, this study takes Beijing as a case and puts forward that urban sprawl can be measured from spatial configuration, urban growth efficiency and external impacts, and then develops a geo-spatial indices system for measuring sprawl, a total of 13 indicators. In order to calculate these indices, different sources data are selected, including land use maps, former land use planning, land price and floor-area-ratio samples, digitized map of the highways and city centers, population and GDP statistical data, etc. Various GIS spatial analysis methods are used to spatialize these indices into 100mx100m cells. Besides, an integrated urban sprawl index is calculated by weight sum of these 13 indices. The application result indicates that geo-spatial indices system can capture most of the typical features and interior differentia of urban sprawl. Construction land in Beijing has kept fast growing with large amount, low efficiency and disordered spatial configuration, indicating a typical sprawling tendency. The following specific sprawl features are identified by each indicator: (1) typical spatial configuration of sprawling: obvious fragmentation and irregularity of landscape due to unsuccessful enforcement of land use planning, unadvisable pattern of typical discontinuous development, strip development and leapfrog development; (2) low efficiency of sprawl: low development density, low population density and economic output in newly developed area; and (3) negative impacts on agriculture, environment and city life. According to the integrated sprawl index, the sprawling amount in the northern part is larger than that in the southern, but the sprawling extent is in converse case; most sprawling area include the marginal area of the near suburbs and the area between highways, etc. Four sprawling patterns are identified: randomly expansion at urban fringe, strip development along or between highways, scattered development of industrial land, leapfrog development of urban residence and industrial area.
基金Item Sponsored by National Science and Technology Support Plan of China (2007BAF02B10)Provincial Natural Science Foundation of Hebei of China (E2006001038)
文摘Some unavoidable factors in the process of cold strip shape measurement interfere with the shape meter, so the shape measuring results cannot reflect the true shape of the strip and the measuring precision is low. The influ- ences of the measuring error of the strip edges, the transverse temperature difference of the strip, the deflection of shape detection roller, and the shape of the strip coil on the shape measuring results were analyzed in detail, and the corresponding compensation models were established. The simulation calculation and analysis were carried out on a cold strip mill, and a number of disciplinarian cognitions were obtained.
基金supported by the National Natural Science Foundation of China (Grant Nos.60772135 and 10978017)the Open Fund of Key Laboratory of Precision Navigation and Technology,National Time Service Center,Chinese Academy of Sciences (Grant No.2009PNTT10)the Fundamental Research Funds for the Central Universities,China (Grant No.JY10000905015)
文摘A method for super high resolution comparison measurement is proposed in this paper with a comparison between the frequency standards of different nominal frequencies, which is based on phase coincidence detection of the two compared signals. It utilizes the regular phase shift characteristics between the signals. The resolution of the measurement approach can reach 10^-13/s at 5 MHz, and the self-calibration resolution can achieve 10^-14/s in the comparison between 10 MHz and 100 MHz, or even can reach 10^-15/s in the comparison between 10 MHz and 190 MHz. This method implies significant progress in the development of the high precision frequency standard comparison technology.
基金This project is supported by Overseas Young Scientists Cooperation of National Natural Science Foundation of China (No.59958204) National Natural Science Foundation of China (No.50175071). :
文摘'N-2-1' principle is widely recognized in the fixture design for deformablesheet metal workpieces, where N, the locators on primary datum, is the key to sheet metal fixturedesign. However, little research is done on how to determine the positions and the number of Nlocators. In practice, the N locators are frequently designed from experience, which is oftenunsatisfactory for achieving the precision requirement in fixture design. A new method to lay outthe N locators for measuring fixture of deformable sheet metal workpiece is presented, given thefixed number of A'. Finite-element method is used to model and analysis the deformation of differentlocator layouts. A knowledge based genetic algorithm (KBGA) is applied to identify the optimumlocator layout for measuring fixture design. An example of a door outer is used to verify theoptimization approach.
基金Supported by The development of the RAPID instrument was supported in part by the National Institute of Diabetes and Digestive and Kidney Diseases, No R03 DK069328-01
文摘AIM:To evaluate the reliability of an instrument that measures disability arising from episodic abdominal pain in patients with suspected sphincter of Oddi dysfunction(SOD).METHODS:Although several treatments have been utilized to reduce pain and associated disability,measurement tools have not been developed to reliably track outcomes.Two pilot studies were conducted to assess test-retest reliability of a newly developed instrument,the recurrent abdominal pain intensity and disability(RAPID) instrument.The RAPID score is a 90-d summation of days where productivity for various daily activities is reduced as a result of abdominal pain episodes,and is modeled after the migraine disability assessment instrument used to measure headache-related disability.RAPID was administered by telephone on 2 consecutive occasions in 2 consenting populations with suspected SOD:a pre-sphincterotomy population(Pilot Ⅰ,n = 55) and a post-sphincterotomy population(Pilot Ⅱ,n = 70).RESULTS:The average RAPID scores for Pilots Ⅰ and Ⅱ were:82 d(median:81.5 d,SD:64 d) and 48 d(median:0 d,SD:91 d),respectively.The concordance between the 2 assessments for both populations was very good:0.81 for the pre-sphincterotomy population and 0.95 for the post-sphincterotomy population.CONCLUSION:The described pilot studies suggest that RAPID is a reliable instrument for measuring disability resulting from abdominal pain in suspected SOD patients.