A two-scale method is proposed to simulate the essential behavior of bolted connections in structures includingelevated temperatures.It is presented,verified,and validated for the structural behavior of two plates,con...A two-scale method is proposed to simulate the essential behavior of bolted connections in structures includingelevated temperatures.It is presented,verified,and validated for the structural behavior of two plates,connectedby a bolt,under a variety of loads and elevated temperatures.The method consists of a global-scale model thatsimulates the structure(here the two plates)by volume finite elements,and in which the bolt is modelled bya spring.The spring properties are provided by a smallscale model,in which the bolt is modelled by volumeelements,and for which the boundary conditions are retrieved from the global-scale model.To ensure the small-scale model to be as computationally efficient as possible,simplifications are discussed regarding the materialmodel and the modelling of the threads.For the latter,this leads to the experimentally validated application ofa non-threaded shank with its stress area.It is shown that a non-linear elastic spring is needed for the bolt inthe global-scale model,so the post-peak behavior of the structure can be described efficiently.All types of boltedconnection failure as given by design standards are simulated by the twoscale method,which is successfullyvalidated(except for net section failure)by experiments,and verified by a detailed system model,which modelsthe structure in full detail.The sensitivity to the size of the part of the plate used in the small-scale modelis also studied.Finally,multi-directional load cases,also for elevated temperatures,are studied with the two-scale method and verified with the detailed system model.As a result,a computationally efficient finite elementmodelling approach is provided for all possible combined load actions(except for nut thread failure and netsection failure)and temperatures.The two-scale method is shown to be insightful,for it contains a functionalseparation of scales,revealing their relationships,and consequently,local small-scale non-convergence can behandled.Not presented in this paper,but the two-scale method can be used in e.g.computationally expensive two-way coupled fire-structure simulations,where it is beneficial for distributed computing and densely packed boltconfigurations with stiffplates,for which a single small-scale model may be representative for several connections.展开更多
In this paper, a two-scale method (TSM) is presented for identifying the mechanics parameters such as stiffness and strength of composite materials with small periodic configuration. Firstly, a formulation is briefl...In this paper, a two-scale method (TSM) is presented for identifying the mechanics parameters such as stiffness and strength of composite materials with small periodic configuration. Firstly, a formulation is briefly given for two-scale analysis (TSA) of the composite materials. And then a two-scale computation formulation of strains and stresses is developed by displacement solution with orthotropic material coefficients for three kinds of such composites structures, i.e., the tension column with a square cross section, the bending cantilever with a rectangular cross section and the torsion column with a circle cross section. The strength formulas for the three kinds of structures are derived and the TSM procedure is discussed. Finally the numerical results of stiffness and strength are presented and compared with experimental data. It shows that the TSM method in this paper is feasible and valid for predicting both the stiffness and the strength of the composite materials with periodic configuration.展开更多
In this paper,a stochastic second-order two-scale(SSOTS)method is proposed for predicting the non-deterministic mechanical properties of composites with random interpenetrating phase.Firstly,based on random morphology...In this paper,a stochastic second-order two-scale(SSOTS)method is proposed for predicting the non-deterministic mechanical properties of composites with random interpenetrating phase.Firstly,based on random morphology description functions(RMDF),the randomness of the material properties of the constituents as well as the correlation among these random properties are fully characterized through the topologies of the constituents.Then,by virtue of multiscale asymptotic analysis,the random effective quantities such as stiffness parameters and strength parameters along with their numerical computation formulae are derived by a SSOTS strategy combined with the Monte-Carlo method.Finally,the SSOTS method developed in this paper shows an excellent computational accuracy,and therefore present an important advance towards computationally efficient multiscale modeling frameworks considering microstructure uncertainties.展开更多
This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of...This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of the problem by a statistical second-order two-scale (SSOTS) analysis method and the algorithm procedure based on the finite-element difference method are presented. Numerical results of coupled cases are compared with those of uncoupled cases. It shows that the coupling effects on temperature, thermal flux, displacement, and stresses are very distinct, and the micro- characteristics of particles affect the coupling effect of the random composites. Furthermore, the coupling effect causes a lag in the variations of temperature, thermal flux, displacement, and stresses.展开更多
In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,th...In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,the random distribution characteristics of particles,including the shape,size,orientation,spatial location,and volume fractions,are all considered.Firstly,the repre.sentation for the microscopic configuration of the statistically inhomogeneous materials is described.Secondly,the SSOTS formulation for the dynamic thermo-mechanical coupled problem is proposed in a constructive way,including the cell problems,effective thermal and mechanical parameters,homogenized problems,and the SSOTS formulas of the temperatures,displacements,heat flux densities and stresses.And then the algorithm procedure corresponding to the SSOTS method is brought forward.The numerical results obtained by using the SSOTS algorithm are compared with those by classical methods.In addition,the thermo-mechanical coupling effect is studied by comparing the results of coupled case with those of uncoupled case.It demonstrates that the coupling effect on the temperatures,heat flux densities,displacements,and stresses is very distinct.The results show that the SSOTS method is valid to predict the dynamic thermo-mechanical coupled performances of statistically inhomogeneous materials.展开更多
The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-sc...The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-scale finite element methods for solutions to the electric potential and the displacement for composite material in periodic struc- ture under the coupled piezoelectricity are derived. The coupled two-scale relation of the electric potential and the displacement is set up, and some finite element approximate estimates and numerical examples which show the effectiveness of the method are presented.展开更多
This paper considers the bending behaviors of composite plate with 3-D periodic configuration.A second-order two-scale(SOTS)computational method is designed by means of construction way.First,by 3-D elastic composite ...This paper considers the bending behaviors of composite plate with 3-D periodic configuration.A second-order two-scale(SOTS)computational method is designed by means of construction way.First,by 3-D elastic composite plate model,the cell functions which are defined on the reference cell are constructed.Then the effective homogenization parameters of composites are calculated,and the homogenized plate problem on original domain is defined.Based on the Reissner-Mindlin deformation pattern,the homogenization solution is obtained.And then the SOTS’s approximate solution is obtained by the cell functions and the homogenization solution.Second,the approximation of the SOTS’s solution in energy norm is analyzed and the residual of SOTS’s solution for 3-D original in the pointwise sense is investigated.Finally,the procedure of SOTS’s method is given.A set of numerical results are demonstrated for predicting the effective parameters and the displacement and strains of composite plate.It shows that SOTS’s method can capture the 3-D local behaviors caused by3-D micro-structures well.展开更多
The dynamic vibration absorber with inerter and grounded stiffness(IGDVA)is used to control a two-scale system subject to a weak periodic perturbation.The vibration suppression effect is remarkable.The amplitude of th...The dynamic vibration absorber with inerter and grounded stiffness(IGDVA)is used to control a two-scale system subject to a weak periodic perturbation.The vibration suppression effect is remarkable.The amplitude of the main system coupled with absorber is significantly reduced,and the high frequency vibration completely disappears.First,through the slow-fast analysis and stability theory,it is found that the stability of the autonomous system exerts a notable regulating effect on the vibration response of the non-autonomous system.After adding the dynamic vibrator absorber,the center in the autonomous system changes to an asymptotically stable focus,consequently suppressing the vibration in the non-autonomous system.Further research reveals that the parameters of the absorber affect the real parts of the eigenvalues of the autonomous system,thereby regulating the stability of the system.Transitioning from a qualitative standpoint to a quantitative approach,a comparison of the solutions before and after the introduction of the dynamic absorber reveals that,when the grounded stiffness ratio and the mass ratio of the dynamic absorber are not equal,the high-frequency part in the analytical solution disappears.As a result,this leads to a reduction in the amplitude of the trajectory,achieving a vibration reduction effect.展开更多
The reaction order plays a crucial role in evaluating the response rate of acid-rock.However,the conventional two-scale model typically assumes that the reaction order is constant as one,which can lead to significant ...The reaction order plays a crucial role in evaluating the response rate of acid-rock.However,the conventional two-scale model typically assumes that the reaction order is constant as one,which can lead to significant deviations from reality.To address this issue,this study proposes a novel multi-order dynamic model for acid-rock reaction by combining rotating disk experimental data with theoretical derivation.Through numerical simulations,this model allows for the investigation of the impact of acidification conditions on different orders of reaction,thereby providing valuable insights for on-site construction.The analysis reveals that higher response orders require higher optimal acid liquid flow rates,and lower optimal H+diffusion coefficients,and demonstrate no significant correlation with acid concentration.Consequently,it is recommended to increase the displacement and use high-viscosity acid for reservoirs with high calcite content,while reducing the displacement and using low-viscosity acid for reservoirs with high dolomite content.展开更多
By analyzing the results of compliance minimization of thermoelastic structures,we observed that microstructures play an important role in this optimization problem.Then,we propose to use a multiple variable cutting(M...By analyzing the results of compliance minimization of thermoelastic structures,we observed that microstructures play an important role in this optimization problem.Then,we propose to use a multiple variable cutting(M-VCUT)level set-based model of microstructures to solve the concurrent two-scale topology optimization of thermoelastic structures.A microstructure is obtained by combining multiple virtual microstructures that are derived respectively from multiple microstructure prototypes,thus giving more diversity of microstructure and more flexibility in design optimization.The effective mechanical properties of microstructures are computed in an off-line phase by using the homogenization method,and then a mapping relationship between the design variables and the effective properties is established,which gives a data-driven model of microstructure.In the online phase,the data-driven model is used in the finite element analysis to improve the computational efficiency.The compliance minimization problem is considered,and the results of numerical examples prove that the proposed method is effective.展开更多
The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elasti...The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elastic case. However, the correspon- dence principle becomes invalid when the materials exhibit ageing. To deal with this problem, a second-order two-scale (SOTS) computational method in the time domain is presented to predict the ageing linear viscoelastic performance of composite materials with a periodic structure. First, in the time domain, the SOTS formulation for calcu- lating the effective relaxation modulus and displacement approximate solutions of the ageing viscoelastic problem is formally derived. Error estimates of the displacement ap- proximate solutions for SOTS method are then given. Numerical results obtained by the SOTS method are shown and compared with those by the finite element method in a very fine mesh. Both the analytical and numerical results show that the SOTS computational method is feasible and efficient to predict the ageing linear viscoelastic performance of composite materials with a periodic structure.展开更多
The purpose of this paper is to solve nonselfadjoint elliptic problems with rapidly oscillatory coefficients. A two-order and two-scale approximate solution expression for nonselfadjoint elliptic problems is considere...The purpose of this paper is to solve nonselfadjoint elliptic problems with rapidly oscillatory coefficients. A two-order and two-scale approximate solution expression for nonselfadjoint elliptic problems is considered, and the error estimation of the twoorder and two-scale approximate solution is derived. The numerical result shows that the presented approximation solution is effective.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i...Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields.展开更多
To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on...To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on postearthquake loss and recovery time is improved.A threelevel function tree model is established,which can consider the dynamic changes in weight coefficients of different category of components relative to their functional losses.Bayesian networks are utilized to quantify the impact of weather conditions,construction technology levels,and worker skill levels on component repair time.A method for determining the real-time functional recovery curve of buildings based on the component repair process is proposed.Taking a three-story teaching building as an example,the seismic resilience indices under basic earthquakes and rare earthquakes are calculated.The results show that the seismic resilience grade of the teaching building is comprehensively judged as GradeⅢ,and its resilience grade is more significantly affected by postearthquake loss.The proposed method can be used to predict the seismic resilience of buildings prior to earthquakes,identify weak components within buildings,and provide guidance for taking measures to enhance the seismic resilience of buildings.展开更多
基金supported by the China Scholarship Council (Grant No.2018-0861-0211).
文摘A two-scale method is proposed to simulate the essential behavior of bolted connections in structures includingelevated temperatures.It is presented,verified,and validated for the structural behavior of two plates,connectedby a bolt,under a variety of loads and elevated temperatures.The method consists of a global-scale model thatsimulates the structure(here the two plates)by volume finite elements,and in which the bolt is modelled bya spring.The spring properties are provided by a smallscale model,in which the bolt is modelled by volumeelements,and for which the boundary conditions are retrieved from the global-scale model.To ensure the small-scale model to be as computationally efficient as possible,simplifications are discussed regarding the materialmodel and the modelling of the threads.For the latter,this leads to the experimentally validated application ofa non-threaded shank with its stress area.It is shown that a non-linear elastic spring is needed for the bolt inthe global-scale model,so the post-peak behavior of the structure can be described efficiently.All types of boltedconnection failure as given by design standards are simulated by the twoscale method,which is successfullyvalidated(except for net section failure)by experiments,and verified by a detailed system model,which modelsthe structure in full detail.The sensitivity to the size of the part of the plate used in the small-scale modelis also studied.Finally,multi-directional load cases,also for elevated temperatures,are studied with the two-scale method and verified with the detailed system model.As a result,a computationally efficient finite elementmodelling approach is provided for all possible combined load actions(except for nut thread failure and netsection failure)and temperatures.The two-scale method is shown to be insightful,for it contains a functionalseparation of scales,revealing their relationships,and consequently,local small-scale non-convergence can behandled.Not presented in this paper,but the two-scale method can be used in e.g.computationally expensive two-way coupled fire-structure simulations,where it is beneficial for distributed computing and densely packed boltconfigurations with stiffplates,for which a single small-scale model may be representative for several connections.
基金The project supported by the Special Funds for Major State Basic Research Project (2005CB321704)the National Natural Science Foundation of China (10590353 and 90405016)The English text was polished by Yunming Chen
文摘In this paper, a two-scale method (TSM) is presented for identifying the mechanics parameters such as stiffness and strength of composite materials with small periodic configuration. Firstly, a formulation is briefly given for two-scale analysis (TSA) of the composite materials. And then a two-scale computation formulation of strains and stresses is developed by displacement solution with orthotropic material coefficients for three kinds of such composites structures, i.e., the tension column with a square cross section, the bending cantilever with a rectangular cross section and the torsion column with a circle cross section. The strength formulas for the three kinds of structures are derived and the TSM procedure is discussed. Finally the numerical results of stiffness and strength are presented and compared with experimental data. It shows that the TSM method in this paper is feasible and valid for predicting both the stiffness and the strength of the composite materials with periodic configuration.
基金partially supported by China Postdoctoral Science Foundation(2018M643573)National Natural Science Foundation of Shaanxi Province(2019JQ-048)+2 种基金National Natural Science Foundation of China(51739007,61971328,11301392 and 11961009)of ChinaShanghai Peak Discipline Program for Higher Education Institutions(ClassⅠ)–Civil EngineeringFundamental Research Funds for the Central Universities(No.22120180529)。
文摘In this paper,a stochastic second-order two-scale(SSOTS)method is proposed for predicting the non-deterministic mechanical properties of composites with random interpenetrating phase.Firstly,based on random morphology description functions(RMDF),the randomness of the material properties of the constituents as well as the correlation among these random properties are fully characterized through the topologies of the constituents.Then,by virtue of multiscale asymptotic analysis,the random effective quantities such as stiffness parameters and strength parameters along with their numerical computation formulae are derived by a SSOTS strategy combined with the Monte-Carlo method.Finally,the SSOTS method developed in this paper shows an excellent computational accuracy,and therefore present an important advance towards computationally efficient multiscale modeling frameworks considering microstructure uncertainties.
基金supported by the Special Funds for the National Basic Research Program of China(Grant No.2012CB025904)the National Natural ScienceFoundation of China(Grant Nos.90916027 and 11302052)
文摘This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of the problem by a statistical second-order two-scale (SSOTS) analysis method and the algorithm procedure based on the finite-element difference method are presented. Numerical results of coupled cases are compared with those of uncoupled cases. It shows that the coupling effects on temperature, thermal flux, displacement, and stresses are very distinct, and the micro- characteristics of particles affect the coupling effect of the random composites. Furthermore, the coupling effect causes a lag in the variations of temperature, thermal flux, displacement, and stresses.
基金supported by the National Natural Science Foundation of China(Grants 11471262,11202032)the Basic Research Project of National Defense(Grant B 1520132013)supported by the State Key Laboratory of Science and Engineering Computing and Center for high performance computing of Northwestem Polytechnical University
文摘In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,the random distribution characteristics of particles,including the shape,size,orientation,spatial location,and volume fractions,are all considered.Firstly,the repre.sentation for the microscopic configuration of the statistically inhomogeneous materials is described.Secondly,the SSOTS formulation for the dynamic thermo-mechanical coupled problem is proposed in a constructive way,including the cell problems,effective thermal and mechanical parameters,homogenized problems,and the SSOTS formulas of the temperatures,displacements,heat flux densities and stresses.And then the algorithm procedure corresponding to the SSOTS method is brought forward.The numerical results obtained by using the SSOTS algorithm are compared with those by classical methods.In addition,the thermo-mechanical coupling effect is studied by comparing the results of coupled case with those of uncoupled case.It demonstrates that the coupling effect on the temperatures,heat flux densities,displacements,and stresses is very distinct.The results show that the SSOTS method is valid to predict the dynamic thermo-mechanical coupled performances of statistically inhomogeneous materials.
基金supported by the National Natural Science Foundation of China(Nos.10801042 and 11171257)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20104410120001)
文摘The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-scale finite element methods for solutions to the electric potential and the displacement for composite material in periodic struc- ture under the coupled piezoelectricity are derived. The coupled two-scale relation of the electric potential and the displacement is set up, and some finite element approximate estimates and numerical examples which show the effectiveness of the method are presented.
基金supported by National Natural Science Foundation of China(GrantNo.90916027)the Special Funds for National Basic Research Program of China(Grant No.2010CB832702)+1 种基金Foundation of Guizhou Science and Technology Department(Grant No.[2013]2144)the State Key Laboratory of Science and Engineering Computing
文摘This paper considers the bending behaviors of composite plate with 3-D periodic configuration.A second-order two-scale(SOTS)computational method is designed by means of construction way.First,by 3-D elastic composite plate model,the cell functions which are defined on the reference cell are constructed.Then the effective homogenization parameters of composites are calculated,and the homogenized plate problem on original domain is defined.Based on the Reissner-Mindlin deformation pattern,the homogenization solution is obtained.And then the SOTS’s approximate solution is obtained by the cell functions and the homogenization solution.Second,the approximation of the SOTS’s solution in energy norm is analyzed and the residual of SOTS’s solution for 3-D original in the pointwise sense is investigated.Finally,the procedure of SOTS’s method is given.A set of numerical results are demonstrated for predicting the effective parameters and the displacement and strains of composite plate.It shows that SOTS’s method can capture the 3-D local behaviors caused by3-D micro-structures well.
基金Project supported by the National Natural Science Foundation of China(Nos.12172233 and U1934201)。
文摘The dynamic vibration absorber with inerter and grounded stiffness(IGDVA)is used to control a two-scale system subject to a weak periodic perturbation.The vibration suppression effect is remarkable.The amplitude of the main system coupled with absorber is significantly reduced,and the high frequency vibration completely disappears.First,through the slow-fast analysis and stability theory,it is found that the stability of the autonomous system exerts a notable regulating effect on the vibration response of the non-autonomous system.After adding the dynamic vibrator absorber,the center in the autonomous system changes to an asymptotically stable focus,consequently suppressing the vibration in the non-autonomous system.Further research reveals that the parameters of the absorber affect the real parts of the eigenvalues of the autonomous system,thereby regulating the stability of the system.Transitioning from a qualitative standpoint to a quantitative approach,a comparison of the solutions before and after the introduction of the dynamic absorber reveals that,when the grounded stiffness ratio and the mass ratio of the dynamic absorber are not equal,the high-frequency part in the analytical solution disappears.As a result,this leads to a reduction in the amplitude of the trajectory,achieving a vibration reduction effect.
基金financially supported by the National Natural Science Foundation of China(Project No.51874336)the National Key Technologies Research and Development Program of China during the 13th Five-Year Plan Period(Project No.2017ZX005030005)。
文摘The reaction order plays a crucial role in evaluating the response rate of acid-rock.However,the conventional two-scale model typically assumes that the reaction order is constant as one,which can lead to significant deviations from reality.To address this issue,this study proposes a novel multi-order dynamic model for acid-rock reaction by combining rotating disk experimental data with theoretical derivation.Through numerical simulations,this model allows for the investigation of the impact of acidification conditions on different orders of reaction,thereby providing valuable insights for on-site construction.The analysis reveals that higher response orders require higher optimal acid liquid flow rates,and lower optimal H+diffusion coefficients,and demonstrate no significant correlation with acid concentration.Consequently,it is recommended to increase the displacement and use high-viscosity acid for reservoirs with high calcite content,while reducing the displacement and using low-viscosity acid for reservoirs with high dolomite content.
基金supported by the National Natural Science Foundation of China(Grant No.12272144).
文摘By analyzing the results of compliance minimization of thermoelastic structures,we observed that microstructures play an important role in this optimization problem.Then,we propose to use a multiple variable cutting(M-VCUT)level set-based model of microstructures to solve the concurrent two-scale topology optimization of thermoelastic structures.A microstructure is obtained by combining multiple virtual microstructures that are derived respectively from multiple microstructure prototypes,thus giving more diversity of microstructure and more flexibility in design optimization.The effective mechanical properties of microstructures are computed in an off-line phase by using the homogenization method,and then a mapping relationship between the design variables and the effective properties is established,which gives a data-driven model of microstructure.In the online phase,the data-driven model is used in the finite element analysis to improve the computational efficiency.The compliance minimization problem is considered,and the results of numerical examples prove that the proposed method is effective.
基金Project supported by the National Natural Science Foundation of China(No.11471262)
文摘The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elastic case. However, the correspon- dence principle becomes invalid when the materials exhibit ageing. To deal with this problem, a second-order two-scale (SOTS) computational method in the time domain is presented to predict the ageing linear viscoelastic performance of composite materials with a periodic structure. First, in the time domain, the SOTS formulation for calcu- lating the effective relaxation modulus and displacement approximate solutions of the ageing viscoelastic problem is formally derived. Error estimates of the displacement ap- proximate solutions for SOTS method are then given. Numerical results obtained by the SOTS method are shown and compared with those by the finite element method in a very fine mesh. Both the analytical and numerical results show that the SOTS computational method is feasible and efficient to predict the ageing linear viscoelastic performance of composite materials with a periodic structure.
基金Project supported by the National Natural Science Foundation of China(No.10590353)the Science Research Project of National University of Defense Technology(No.JC09-02-05)
文摘The purpose of this paper is to solve nonselfadjoint elliptic problems with rapidly oscillatory coefficients. A two-order and two-scale approximate solution expression for nonselfadjoint elliptic problems is considered, and the error estimation of the twoorder and two-scale approximate solution is derived. The numerical result shows that the presented approximation solution is effective.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
文摘Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields.
基金The National Key Research and Development Program of China(No.2023YFC3805003)。
文摘To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on postearthquake loss and recovery time is improved.A threelevel function tree model is established,which can consider the dynamic changes in weight coefficients of different category of components relative to their functional losses.Bayesian networks are utilized to quantify the impact of weather conditions,construction technology levels,and worker skill levels on component repair time.A method for determining the real-time functional recovery curve of buildings based on the component repair process is proposed.Taking a three-story teaching building as an example,the seismic resilience indices under basic earthquakes and rare earthquakes are calculated.The results show that the seismic resilience grade of the teaching building is comprehensively judged as GradeⅢ,and its resilience grade is more significantly affected by postearthquake loss.The proposed method can be used to predict the seismic resilience of buildings prior to earthquakes,identify weak components within buildings,and provide guidance for taking measures to enhance the seismic resilience of buildings.